ОХНМКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Получение водорастворимых комплексов цинка(II) с этилендиаминтетрауксусной кислотой. Молекулярная структура тригидрата этилендиаминтетраацетата цинка

Код статьи
10.31857/S0132344X22600436-1
DOI
10.31857/S0132344X22600436
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 49 / Номер выпуска 4
Страницы
205-216
Аннотация
Малорастворимый этилендиаминтетраацетатоцинкат цинка Zn[ZnL] реагирует с натриевой Na4L, калиевой K4L, аммониевой (NH4)4L, 2-аминийэтанольной (H3NCH2CH2OH)4L и гексаметилен-1,6-диаминиевой {H3N(CH2)6NH3}2L солями этилендиаминтетрауксусной кислоты H4L, образуя хорошо растворимые этилендиаминтетраацетатоцинкаты натрия Na2[ZnL], калия K2[ZnL], аммония (NH4)2[ZnL], 2-аминийэтанола (H3NCH2CH2OH)2[ZnL] и гексаметилен-1,6-диаминия {H3N(CH2)6NH3}[ZnL]. Тетракис(триэтиламиниевая) соль {(C2H5)3NH}4L в реакции с Zn[ZnL] образует не ожидаемый этилендиаминтетраацетатоцинкат бис(триэтиламиния) {(C2H5)3NH}2[ZnL], а этилендиаминтетраацетатоцинкат моно(триэтиламиния) – {(C2H5)3NH}H[ZnL], который в водном растворе генерирует малорастворимый этилендиаминтетраацетат цинка H2[ZnL(H2O)] · 2H2O, структура которого исследована методом РСА (CCDC № 2172274).
Ключевые слова
соли этилендиаминтетрауксусной кислоты 2-аминоэтанол гексаметилен-1,6-диамин триэтиламин этилендиаминтетраацетатоцинкаты аминов комплексы цинка молекулярная структура
Дата публикации
01.04.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
9

Библиография

  1. 1. Дятлова Н.М., Темкина В.Я., Попов К.И. Комплексоны и комплексонаты металлов. М.: Химия, 1988. 544 с.
  2. 2. Семенов В.В., Золотарева Н.В., Петров Б.И. Патент РФ 2015110362/04 (016255) // БИ. 2017. № 4.
  3. 3. Семенов В.В., Золотарева Н.В., Новикова О.В. и др. // Изв. АН. Сер. хим. 2022. № 5. С. 980.
  4. 4. Леонтьева М.В., Дятлова Н.М. // Коорд. химия. 1990. Т. 16. С. 823.
  5. 5. Lakshminarayanan R. // J. Electrochem. Soc. India. 1997. V. 46. P. 45.
  6. 6. Borowiec M., Hoffmann K., Hoffmann J. // Intern. J. Environmen. Anal. Chem. 2009. V. 89. P. 717. https://doi.org/10.1080/03067310802691672
  7. 7. Jervis R.E., Krishnan S.S. // J. Inorg. Nucl. Chem. 1967. V. 29. P. 97. https://doi.org/10.1016/0022-1902 (67)80149-0
  8. 8. Bampidis V., Azimonti G., de Lourdes Bastos M. et al. // Eur. Food Safety Authority. 2020. V. 18. e06145. https://doi.org/10.2903/j.efsa.2020.6024
  9. 9. Collins R.N., Merrington G., McLaughlin M.J., Knudsen C. // Environ. Toxicol. Chem. 2002. V. 21. P. 1940. https://doi.org/10.1002/etc.5620210923
  10. 10. Soulages O.E., Acebal S.G., Grassi R.L., Vuano B.M. // Anales de la Asociacion Quimica Argentina. 1997. V. 85. P. 261.
  11. 11. Rigaku Oxford Diffraction. CrysAlis Pro Software System. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
  12. 12. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  13. 13. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  14. 14. Фридман А.Я., Леонтьева М.В., Дятлова Н.М. // Коорд. химия. 1986. Т. 12. С. 736.
  15. 15. Mizuta T., Wang J., Miyoshi K. // Inorg. Chim. Acta. 1995. V. 230. P. 119. https://doi.org/10.1016/0020-1693 (94)04311-I
  16. 16. Зефиров Ю.В., Зоркий П.М. // Успехи химии. 1995. Т. 64. С. 446 (Zefirov Yu.V., Zorky P.M. // Russ. Chem. Rev. 1995. V. 64. P. 415). https://doi.org/10.1070/RC1995v064n05ABEH000157
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека