RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Heteroleptic Cobalt Complexes with Abnormally Coordinated N-Heterocyclic Carbene

PII
10.31857/S0132344X22600527-1
DOI
10.31857/S0132344X22600527
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 7
Pages
398-405
Abstract
The reaction of cobalt pivalate [Co(Piv)2]n and in situ generated N‑heterocyclic carbene IPrPh (1,3-bis(2,6-diisopropylphenyl)-2-phenylimidazol-4-ylidene) affords heteroligand complexes [Co2(Piv)4-(IPrPh)2] (I), [Co2(Piv)2.8(OtBu)1.2(IPrPh)2] (II), and [Co3(μ3-O)(Piv)4(IPrPh)2] (III). The structures of complexes II·C6H14 and III are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2216724 and 2216725, respectively). Exchange spin-spin interactions between the magnetic Со2+ ions in the synthesized compounds are estimated by quantum chemical calculations.
Keywords
кобальт карбоксилаты карбены рентгеноструктурный анализ квантово-химические расчеты
Date of publication
01.07.2023
Year of publication
2023
Number of purchasers
0
Views
12

References

  1. 1. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools / Ed. Diez-Gonzalez S. Croydon (UK): The Royal Society of Chemistry, 2016.
  2. 2. Hopkinson M.N., Richter C., Schedler M., Glorius F. // Nature. 2014. V. 510. P. 485.
  3. 3. Wang D., Leng X., Ye S., Deng L. // J. Am. Chem. Soc. 2019. V. 141. P. 7731.
  4. 4. Sinha N., Pfund B., Wegeberg C. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 9859.
  5. 5. Smith J.M., Long J.R. // Inorg. Chem. 2010. V. 49. P. 11223.
  6. 6. Zolnhofer E.M., Käß M., Khusniyarov M.M. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 15072.
  7. 7. Massard A., Braunstein P., Danopoulos A.A. et al. // Organometallics. 2015. V. 34. P. 2429.
  8. 8. Bellan E.V., Poddel’sky A.I., Protasenko N.A. et al. // ChemistrySelect. 2016. V. 1. P. 2988.
  9. 9. Hu X., Castro-Rodriguez I., Meyer K. // J. Am. Chem. Soc. 2004. V. 126. P. 13464.
  10. 10. Gao Y., Li G., Deng L. // J. Am. Chem. Soc. 2018. V. 140. P. 2239.
  11. 11. Tokmic K., Markus C.R., Zhu L., Fout A.R. // J. Am. Chem. Soc. 2016. V. 138. P. 11907.
  12. 12. Wang D., Lai Y., Wang P et al. // J. Am. Chem. Soc. 2021. V. 143. P. 12847.
  13. 13. Mo Z., Xiao J., Gao Y., Deng L. // J. Am. Chem. Soc. 2014. V. 136. P. 17414.
  14. 14. Liu Y., Deng L. // J. Am. Chem. Soc. 2017. V. 139. P. 1798.
  15. 15. Yu R.P., Darmon J.M., Milsmann C. // J. Am. Chem. Soc. 2013. V. 135. P. 13168.
  16. 16. Harris C.F., Bayless M.B., van Leest N.P. // Inorg. Chem. 2017. V. 56. P. 12421.
  17. 17. Deng L., Bill E., Wieghardt K., Holm R.H. // J. Am. Chem. Soc. 2009. V. 131. P. 11213.
  18. 18. Tokmic K., Greer R.B., Zhu L., Fout A.R. // J. Am. Chem. Soc. 2018. V. 140. P. 14844.
  19. 19. Yao X.-N., Du J.-Z., Zhang Y.-Q. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 37.
  20. 20. Ghadwal R.S., Reichmann S.O., Herbst-Irmer R. // Chem. Eur. J. 2015. V. 21. P. 4247.
  21. 21. Rottschäfer D., Glodde T., Neumann B. et al. // Chem. Commun. 2020. V. 56. P. 2027.
  22. 22. Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // In-org. Chim. Acta. 2020. V. 508. P. 119643.
  23. 23. Yambulatov D.S., Petrov P.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2020. V. 30. P. 293.
  24. 24. Yambulatov D.S., Nikolaevskii S.A., Shmelev M.A. et al. // Mendeleev Commun. 2021. V. 31. P. 624.
  25. 25. Gordon A.J., Ford R.A. The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References. N.Y.: Wiley, 1972.
  26. 26. Petrov P.A., Smolentsev A.I., Bogomyakov A.S., Konchenko S.N. // Polyhedron. 2017. V. 129. P. 60.
  27. 27. Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madiso (WI, USA): Bruker AXS Inc., 2017.
  28. 28. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  29. 29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  30. 30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Crystallogr. 2009. V. 42. P. 339.
  31. 31. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision C. 01. Wallingford: Gaussian, 2016.
  32. 32. Becke A.D. // J. Chem. Phys. 1992. V. 96. P. 2155.
  33. 33. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456.
  34. 34. Chegerev M.G., Piskunov A.V., Tsys K.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 875.
  35. 35. Tsys K.V., Chegerev M.G., Fukin G.K. et al. // Mendeleev Commun. 2020. V. 30. P. 205.
  36. 36. Noodleman L. // J. Chem. Phys. 1981. V. 74. P. 5737.
  37. 37. Shoji M., Koizumi K., Kitagawa Y. et al. // Chem. Phys. Lett. 2006. V. 432. P. 343.
  38. 38. Chemcraft. Version 1.8. 2014. http://www.chemcraftprog.com
  39. 39. Ghadwal R.S., Lamm J.-H., Rottschäfer D. et al. // Dalton Trans. 2017. V. 46. P. 7664.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library