RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Coordination Compounds in Devices of Molecular Spintronics

PII
10.31857/S0132344X22700013-1
DOI
10.31857/S0132344X22700013
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 1
Pages
3-12
Abstract
Spintronics, being one of the youngest fields of microelectronics, is applied already for several decades to enhance the efficiency of components of computer equipment and to develop units of quantum computer and other electronic devices. The use of molecular material layers in a spintronic device makes it possible to substantially deepen the understanding of the spin transport mechanisms and to form foundation for a new trend at the nexus of physics and chemistry: molecular spintronics. Since the appearance of this trend, various coordination compounds, including semiconductors, single-molecule magnets, complexes with spin transitions, and metal-organic frameworks, are considered as molecular materials of spintronic devices with diverse unusual characteristics imparted by these materials. Specific features of using the earlier described representatives of the listed classes of compounds or their analogs, which are still “kept on the shelves” in chemical laboratories, for manufacturing polyfunctional devices of molecular spintronics are briefly reviewed.
Keywords
вертикальный спиновый клапан координационные соединения металлорганические координационные полимеры молекулярная спинтроника молекулярный магнетизм спиновое состояние “спинтерфейс”
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
15

References

  1. 1. Yates J.T. // Science. 1998. V. 279. № 5349. P. 335.
  2. 2. Zantye P.B., Kumar A., Sikder A.K. // Sci. Eng. Ineering. 2004. V. 45. № 3. P. 89.
  3. 3. Wolf S.A., Chtchelkanova A.Y., Treger D.M. // IBM J. Res. Dev. 2006. V. 50. № 1. P. 101.
  4. 4. Wolf S.A., Awschalom D.D., Buhrman R.A. et al. // Science. 2001. V. 294. № 5546. P. 1488.
  5. 5. Žutić I., Fabian J., Das Sarma S. // Rev. Mod. Phys. 2004. V. 76. № 2. P. 323.
  6. 6. Baibich M.N., Broto J.M., Fert A. et al. // Phys. Rev. Lett. 1988. V. 61. № 21. P. 2472.
  7. 7. Binasch G., Grünberg P., Saurenbach F. et al. // Phys. Rev. B. 1989. V. 39. № 7. P. 4828.
  8. 8. Ney A., Pampuch C., Koch R. et al. // Nature. 2003. V. 425. № 6957. P. 485.
  9. 9. Behin-Aein B., Datta D., Salahuddin S., Datta S. // Nat. Nanotechnol. 2010. V. 5. № 4. P. 266.
  10. 10. Burkard G., Engel H.A., Loss D. // Fortschr. Phys. 2000. V. 48. № 9–11. P. 965.
  11. 11. Rao C.N.R., Cheetham A.K. // Science. 1996. V. 272. № 5260. P. 369.
  12. 12. Khvalkovskii A.V., Zvezdin K.A. // J. Magn. Magn. Mater. 2006. V. 300. № 1. P. 270.
  13. 13. Parkin S.S.P., Roche K.P., Samant M.G. et al. // J. A-ppl. Phys. 1999. V. 85. № 8. P. 5828.
  14. 14. Tehrani S., Engel B., Slaughter J.M. et al. // IEEE Trans. Magn. 2000. V. 36. № 5. P. 2752.
  15. 15. Khvalkovskiy A.V., Apalkov D., Watts S. et al. // J. Phys. D: Appl. Phys. 2013. V. 46. № 13.
  16. 16. Rizzo N.D., Houssameddine D., Janesky J. et al. // IEEE Trans. Magn. 2013. V. 49. № 7. P. 4441.
  17. 17. Kim Y., Yun J.G., Park S.H. et al. // IEEE Trans. Electron Devices. 2012. V. 59. № 1. P. 35.
  18. 18. Gajek M., Nowak J.J., Sun J.Z.et al. // Appl. Phys. Lett. 2012. V. 100. № 13. P. 1.
  19. 19. Devkota J. et al. Organic Spin Valves: A Review // Adv. Funct. Mater. 2016. V. 26. № 22. P. 3881.
  20. 20. Camarero J., Coronado E. // J. Mater. Chem. 2009. V. 19. № 12. P. 1678.
  21. 21. Felser C., Fecher G.H., Balke B. // Angew. Chem. Int. Ed. 2007. V. 46. № 5. P. 668.
  22. 22. Sanvito S. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3336.
  23. 23. Clemente-Juan J.M., Coronado E., Gaita-Ariñoa A. // Chem. Soc. Rev. 2012. V. 41. № 22. P. 7464.
  24. 24. Coronado E. // Nat. Rev. Mater. 2020. V. 5. № 2. P. 87.
  25. 25. Xiong Z.H., Wu D., Valy Vardeny Z., Shi J. // Nature. 2004. V. 427. № 6977. P. 821.
  26. 26. Coronado E., Yamashita M. // Dalton Trans. 2016. V. 45. № 42. P. 16553.
  27. 27. Sanvito S. // Nature Phys. 2010. V. 6. № 8. P. 562.
  28. 28. Barthélémy A., Fert A., Contour J.P. et al. // J. Magn. Magn. Mater. 2002. V. 242–245. P. 68.
  29. 29. Fert A., Barthélémy A., Petroff F. // Elsevier. 2006. V. 1. P. 153.
  30. 30. Wang F.J., Yang C.G., Vardeny Z.V., Li X.G. // Phys. Rev. B Condens. Matter. 2007. V. 75. № 24.
  31. 31. Yoo J.W., Jang H.W., Prigodin V.N. et al. // Synth. Met. 2010. V. 160. P. 216.
  32. 32. Raman K.V. // Appl. Phys. Rev. 2014. V. 1. № 3. P. 031101.
  33. 33. Cinchetti M., Dediu V.A., Hueso L.E. // Nat. Mater. 2017. V. 16. № 5. P. 507.
  34. 34. Bedoya-Pinto A., Miralles S.G., Vélez S. et al. // Adv. Funct. Mater. 2018. V. 28. № 16. P. 1.
  35. 35. Barraud C., Seneor P., Mattana R. et al. // Nat. Phys. 2010. V. 6. № 8. P. 615.
  36. 36. Forment-Aliaga A., Coronado E. // Chem. Rec. 2018. V. 18. № 7. P. 737.
  37. 37. Brütting W. // Physica Status Solidi. 2005. P. 1.
  38. 38. Friend R.H., Gymer R.W., Holmes A.B. et al. // Nature. 1999. V. 397. № 6715. P. 121.
  39. 39. Forrest S., Burrows P., Thompson M. // IEEE Spectr. 2000. V. 37. № 8. P. 29.
  40. 40. Ding S., Tian Y., Hu W. // Nano Res. 2021.
  41. 41. Wang F.J., Xiong Z.H., Wu D. et al. // Synth. Met. 2005. V. 155. № 1. P. 172.
  42. 42. Santos T.S., Lee J.S., Migdal P. et al. // Phys. Rev. Lett. 2007. V. 98. № 1. P. 016601.
  43. 43. Prezioso M., Riminucci A., Bergenti I. et al. // Adv. Mater. 2011. V. 23. № 11. P. 1371.
  44. 44. Jiang S.W., Chen B.B., Wang P. et al. // Appl. Phys. Lett. 2014. V. 104. № 26. Art. 262402.
  45. 45. Jiang S.W., Shu D.J., Lin L. et al. // New J. Phys. 2014. V. 16. № 1. P. 013028.
  46. 46. Mondal P.C., Fontanesi C., Waldeck D.H. et al. // Acc. Chem. Res. 2016. V. 49. № 11. P. 2560.
  47. 47. Delprat S., Galbiati M., Tatay S. et al. // J. Phys. D: Appl. Phys. 2018. V. 51. № 47.
  48. 48. Yang W., Shi Q., Miao T. et al. // Nat. Commun. 2019. V. 10. № 1. P. 1.
  49. 49. Xia H., Zhang S., Li H. et al. // Results Phys. 2021. V. 22. P. 103963.
  50. 50. Droghetti A., Steil S., Großmann N. et al. // Phys. Rev. B. 2014. V. 89. № 9. P. 094412.
  51. 51. Bergenti I., Borgatti F., Calbucci M. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 9. P. 8132.
  52. 52. Riminucci A., Yu Z.G., Prezioso M. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 8. P. 8319.
  53. 53. Sun D., Miller J.S., Liu F. et al. // World Scientific 2018. V. 2. P. 167.
  54. 54. Bedoya-Pinto A., Prima-García H., Casanova F. et al. // Adv. Electron. Mater. 2015. V. 1. № 6. P. 1.
  55. 55. Sun X., Bedoya-Pinto A., Mao Z. et al. // Adv. Mater. 2016. V. 28. № 13. P. 2609.
  56. 56. Yu D.E.C., Matsuda M., Tajima H. et al. // J. Mater. Chem. 2009. V. 19. № 6. P. 718.
  57. 57. Yu D.E.C., Matsuda M., Tajima H. et al. // Dalton Trans. 2011. V. 40. № 10. P. 2283.
  58. 58. Black N., Daiki T., Matsushita M.M. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 1. P. 514.
  59. 59. Pilia L., Serri M., Matsushita M.M. et al. // Adv. Funct. Mater. 2014. V. 24. № 16. P. 2383.
  60. 60. Christou G., Gatteschi D., Hendrickson D.N. et al. // MRS Bull. 2000. V. 25. № 11. P. 66.
  61. 61. Novikov V., Nelyubina Yu. // Russ. Chem. Rev. 2021. V. 90. № 10. P. 1330.
  62. 62. Bogani L., Wernsdorfer W. // Nanosci. Technol. 2009. P. 194.
  63. 63. Leuenberger M.N., Loss D. // Nature. 2001. V. 410. № 6830. P. 789.
  64. 64. Elste F., Timm C. // Phys. Rev. B. 2006. V. 73. № 23. P. 235305.
  65. 65. Timm C., Elste F. // Phys. Rev. B. 2006. V. 73. № 23. P. 235304.
  66. 66. Ishikawa N., Sugita M., Ishikawa T. et al. // J. Am. Chem. Soc. 2003. V. 125. № 29. P. 8694.
  67. 67. Ishikawa N., Sugita M., Wernsdorfer W. // Ang. Chem. Int. Ed. 2005. V. 44. № 19. P. 2931.
  68. 68. Katoh K., Komeda T., Yamashita M. // The Chem. Rec. 2016. V. 16. № 2. P. 987.
  69. 69. Jo M.H., Grose J.E., Baheti K. et al. // Nano Lett. 2006. V. 6. № 9. P. 2014.
  70. 70. Stepanow S., Honolka J., Gambardella P. et al. // J. Am. Chem. Soc. 2010. V. 132. № 34. P. 11900.
  71. 71. Candini A., Klyatskaya S., Ruben M. et al. // Nano Lett. 2011. V. 11. № 7. P. 2634.
  72. 72. Urdampilleta M., Nguyen N.V., Cleuziou J.P. et al. // Int. J. Mol. Sci. 2011. V. 12. № 10. P. 6656.
  73. 73. Shao D., Wang X.-Y. // Chin. J. Chem. 2020. V. 38. № 9. P. 1005.
  74. 74. Mannini M., Pineider F., Sainctavit P. et al. // Nature Mater. 2009. V. 8. № 3. P. 194.
  75. 75. Cini A., Mannini M., Totti F. et al. // Nat. Commun. 2018. V. 9. № 1. P. 480.
  76. 76. Mitcov D., Pedersen A.H., Ceccato M. et al. // Chem. Sci. 2019. V. 10. № 10. P. 3065.
  77. 77. Cucinotta G., Poggini L., Pedrini A. et al. // Adv. Funct. Mater. 2017. V. 1703600. P. 1.
  78. 78. Miralles S.G., Bedoya-Pinto A., Baldoví J.J. et al. // Chem. Sci. 2018. V. 9. № 1. P. 199.
  79. 79. Senthil Kumar K., Ruben M. // Coord. Chem. Rev. 2017. V. 346. P. 176.
  80. 80. Shepherd H.J., Molnár G., Nicolazzi W. et al. // Eur. J. Inorg. Chem. 2013. V. 2013. № 5–6. P. 653.
  81. 81. Cavallini M. // Phys. Chem. Chem. Phys. 2012. V. 14. № 34. P. 11867.
  82. 82. Zlobin I.S., Aisin R.R., Novikov V.V. // Russ. J. Coord. Chem. 2022. V. 48. № 1. P. 33.
  83. 83. Long G.J., Grandjean F., Reger D.L. //. Springer. 2004. P. 91.
  84. 84. Mahfoud T., Molnár G., Cobo S. et al. // Appl. Phys. Lett. 2011. V. 99. № 5. P. 053307.
  85. 85. Naggert H., Bannwarth A., Chemnitz S. et al. // Dalton Trans. 2011. V. 40. № 24. P. 6364.
  86. 86. Aisin R.R., Belov A.S., Belova S.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 1. P. 52.
  87. 87. Niel V., Gaspar A.B., Muñoz M.C. et al. // Inorg. Chem. 2003. V. 42. № 15. P. 4782.
  88. 88. Aravena D., Ruiz E. // J. Am. Chem. Soc. 2012. V. 134. № 2. P. 777.
  89. 89. Baadji N., Sanvito S. // Phys. Rev. Lett. 2012. V. 108. № 21. P. 217201.
  90. 90. Lefter C., Davesne V., Salmon L. et al. // Magnetochemistry. 2016. V. 2. № 1. P. 18.
  91. 91. Lee K., Park J., Song I., Yoon S.M. // Bull. Korean. Chem. Soc. 2021. V. 42. № 9. P. 1170.
  92. 92. Dong R., Zhang Z., Tranca D.C. et al. // Nat. Commun. 2018. V. 9. № 1. P. 2637.
  93. 93. Yang C., Dong R., Wang M. et al. // Nat. Commun. 2019. V. 10. № 1. P. 3260.
  94. 94. Yoon S.M., Park J.H., Grzybowski B.A. // Ang. Chem. 2017. V. 129. № 1. P. 133.
  95. 95. Dong R., Zhang T., Feng X. // Chem. Rev. 2018. V. 118. № 13. P. 6189.
  96. 96. Song X., Liu J., Zhang T., Chen L. // Sci. China Chem. 2020. V. 63. № 10. P. 1391.
  97. 97. Wang P., Jiang X., Hu J. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 19. P. 11045.
  98. 98. Chakravarty C., Mandal B., Sarkar P.J. // Phys. Chem. C. 2016. V. 120. № 49. P. 28307.
  99. 99. Mandal B., Sarkar P. // Phys. Chem. Chem. Phys. 2015. V. 17. № 26. P. 17437.
  100. 100. Song X. et al. // Ang. Chem. Int. Ed. 2020. V. 59. № 3. P. 1118.
  101. 101. Aulakh D. et al. // J. Am. Chem. Soc. 2015. V. 137. № 29. P. 9254.
  102. 102. Aulakh D. et al. // Inorg. Chem. 2017. V. 56. № 12. P. 6965.
  103. 103. Aulakh D. et al. // J. Am. Chem. Soc. 2019. V. 141. № 7. P. 2997.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library