RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Study of the Reduction of Cobalt(III) Complexes by In Situ NMR Spectroscopy

PII
10.31857/S0132344X22700037-1
DOI
10.31857/S0132344X22700037
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 1
Pages
27-35
Abstract
An approach for monitoring the redox activation of drug delivery in cobalt(III) complexes by in situ NMR spectroscopy is proposed. The reduction of the heteroleptic cobalt(III) complexes containing the 6,7-dihydroxycoumarin molecule applied as a model drug is studied using the proposed approach. The replacement of the bipyridine ligand in the cobalt(III) complex by phenanthroline considerably increases the redox-activated release rate of the drug.
Keywords
<i>in situ</i> спектроскопия ядерного магнитного резонанса дигидроксикумарин комплексы кобальта редокс-активируемая доставка лекарственных препаратов
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
14

References

  1. 1. Brown J.M., Wilson W.R. // Nat. Rev. Cancer. 2004. V. 4. P. 437.
  2. 2. Zhang P., Sadler P.J. // Eur. J. Inorg. Chem. 2017. P. 1541.
  3. 3. Areas E.S., Paiva J.L.A., Ribeiro F.V. et al. // Eur. J. Inorg. Chem. 2019. V. 37. P. 4031.
  4. 4. Renfrew A.K., O’Neill E.S., Hambley T.W. et al. // Coord. Chem. Rev. 2018. V. 375. P. 221.
  5. 5. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  6. 6. Jungwirth U., Kowol C.R., Keppler B.K. et al. // Antioxid. Redox. Signal. 2011. V. 15. P. 1085.
  7. 7. Graf N., Lippard S.J. // Adv. Drug. Deliv. Rev. 2012. V. 64 P. 993.
  8. 8. Ware D.C., Siim B.G., Robinson K.G. et al. // Inorg. Chem. 1991. V. 30. P. 3750.
  9. 9. Craig P.R., Brothers P.J., Clark G.R. et al. // Dalton Trans. 2004. V. 4. P. 611.
  10. 10. Failes T.W., Cullinane C., Diakos C.I. et al. // Chem. Eur. J. 2007. V. 13. P. 2974.
  11. 11. Karnthaler-Benbakka M.S.C., Groza M.S.D., Kryeziu M.K. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 12930.
  12. 12. Souza I.S.A., Santana S.S., Gomez J.G. et al. // Dalton Trans. 2020. V. 49. P. 16425.
  13. 13. Sarkar T., Kumar A., Sahoo S. et al. // Inorg. Chem. 2021. V. 60. P. 6649.
  14. 14. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  15. 15. Ma D.-L., Wu C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.
  16. 16. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  17. 17. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.-
  18. 18. Stamatatos T.C., Bell A., Cooper P. et al. // Inorg. Chem. Commun. 2005. V. 8. P. 533.
  19. 19. Alvarez S. // Chem. Rev. 2015. V. 115. P. 13447.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library