- PII
- 10.31857/S0132344X23700238-1
- DOI
- 10.31857/S0132344X23700238
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 49 / Issue number 6
- Pages
- 360-366
- Abstract
- The trinuclear cobalt(III) complex [(Bipy)5Co3(L)2](Cl)3 (I) is synthesized by the template reaction of 2,2'-(1H-imidazole-4,5-diyl)bis(4-ethylphenol) (L) and bis(2,2-bipyridine)cobalt(II) dichloride in the presence of diazabicycloundecene. The complex is isolated in the individual state and characterized by elemental analysis, cyclic voltammetry, UV-VIS spectroscopy, and X-ray diffraction (XRD) (CIF file СCDC no. 2201135). According to the obtained data, the cobalt ions in trinuclear complex I have the oxidation state +3, and the complex formation occurs with the oxidation of the initial cobalt(II) ions.
- Keywords
- полиядерные комплексы кобальта редокс-активные лиганды рентгеноструктурный анализ циклическая вольтамперометрия УФ-вид. спектроскопия
- Date of publication
- 01.06.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 14
References
- 1. Evangelio E., Ruiz-Molina D. // Eur. J. Inorg. Chem. 2005. V. 2005. P. 2957.
- 2. Gütlich P., Garcia Y., Woike T. // Coord. Chem. Rev. 2001. V. 219–221. P. 839.
- 3. Tezgerevska T., Rousset E., Gable R.W. et al. // Dalton Trans. 2019. V. 48. P. 11674.
- 4. Rajput A., Sharma A.K., Barman S.K. et al. // Coord. Chem. Rev. 2020. V. 414. P. 213240.
- 5. Slater J.W., D’Alessandro, D.M., Keene, F.R. et al. // Dalton Trans. 2006. V. 0. P. 1954.
- 6. Bubnov, M.P., Piskunov, A.V., Zolotukhin, A.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 224. https://doi.org/10.1134/S107032842003001X
- 7. Gransbury G.K., Livesay B.N., Janetzki J.T. et al. // J. Am. Chem. Soc. 2020. V. 142. P. 10692.
- 8. Arion V.B., Rapta P., Telser J. et al. // Inorg. Chem. 2011. V. 50. P. 2918.
- 9. Shimazaki Y., Tani F., Fukui K. et al. // J. Am. Chem. Soc. 2003. V. 125. P. 10512.
- 10. Ohtsu H., Tanaka K. // Angew. Chem. Int. Ed. 2004. V. 43. P. 6301.
- 11. Nikovskiy I., Polezhaev A., Novikov V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629.
- 12. Aleshin D.Y., Nikovskiy I., Novikov V.V. et al. // ACS Omega. 2021. V. 6. P. 33111.
- 13. Freire C., Nunes M., Pereira C. et al. // Coord. Chem. Rev. 2019. V. 394. P. 10434.
- 14. Venkataramanan N.S., Kuppuraj G., Rajagopal S. // Coord. Chem. Rev. 2005. V. 249. P. 1249.
- 15. Mondal I., Chattopadhyay S. // J. Coord. Chem. 2019. V. 72. P. 3183.
- 16. Gould C.A., Mu E., Vieru V. et al. // J. Am. Chem. Soc. 2020. V. 142. P. 21197.
- 17. Richardson C., Steel P.J., D’alessandro D.M. et al. // Dalton Trans. 2002. P. 2775.
- 18. Chen S.-S. // CrystEngComm. 2016. V. 18. P. 6543.
- 19. Kaim W. // Coord. Chem. Rev. 2001. V. 219–221. P. 463.
- 20. Nikovskiy I.A., Karnaukh K.M., Spiridonov K.A. et al. // Magnetochemistry. 2022. V. 8. P. 132.
- 21. Váhovská L., Potočňák I., Vitushkina S. et al. // Polyhedron. 2016. V. 117. P. 359.
- 22. Sheldrick G.M. // Acta Crystallogr. 2008. V. 64. P. 112.
- 23. Dolomanov O.V. Bourhis, L.J., Gildea, R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- 24. Demaison J., Császár A.G. // J. Mol. Struct. 2012. V. 1023. P. 7.
- 25. Alvarez S. // Chem. Rev. 2015. V. 115. P. 134473.
- 26. Freiherr von Richthofen C.G., Stammler A., Bögge H. et al. // J. Org. Chem. 2012. V. 77. P. 1435.
- 27. Servedio L.T., Lawton J.S., Zawodzinski T.A. // J. Appl. Electrochem. 2021. V. 51. P. 87.