- PII
- 10.31857/S0132344X23700330-1
- DOI
- 10.31857/S0132344X23700330
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 49 / Issue number 12
- Pages
- 772-781
- Abstract
- A number of new bimetallic acetate and pivalate complexes of the Pd–Mn system have been synthesized and structurally characterized. The starting complex [Pd(OOCMe)4Mn] reacts with N donor ligands such as 1,10-phenanthroline to form [Pd(OOCMe)4Mn(phen)]·MeCN (I) (CIF file CCDC no. 2217716). The reactions of substitution of acetate bridges for pivalate bridges in heterometallic carboxylate Pd–Mn complexes have been studied; It has been shown that complete replacement of all acetate bridges with pivalate bridges is possible both in the heterometallic complex (I), in which there is a ligand coordinated to an additional metal atom, with the formation of the compound [Pd(Piv)4Mn(phen)]·C6H6, (II) ( CIF file CCDC No. 2217717), structurally close to the original acetate complex, and in the acetate complex [Pd(OOCMe)4Mn]. The heterometallic pivalate cocrystallizate [Pd(Piv)4Mn 2HPiv] (III) obtained in the latter case (CIF file CCDC No. 2217718) is capable of reacting with 5-nitro-1,10-phenanthroline to form the complex [Pd(Piv)4Mn( nphen)] (IV) (CIF file CCDC No. 2217719).
- Keywords
- палладий марганец гетерометаллические комплексы синтез рентгеноструктурный анализ кристаллохимия
- Date of publication
- 01.12.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 12
References
- 1. Buchwalter P., Rosé J., Braunstein P. // Chem. Rev. 2015. V. 115. № 1. P. 28.
- 2. Kozitsyna N.Yu., Nefedov S.E., Yakushev I.A. et al. // Mendeleev Commun. 2007. V. 17. № 5. P. 261.
- 3. Khramov E., Belyakova O., Murzin V. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 12–13. P. 2577.
- 4. Ershov B.G., Anan’ev A.V., Abkhalimov E.V. et al. // Nanotechnologies Russ. 2011. V. 6. № 5–6. P. 323.
- 5. Cherkashina N.V., Churakov A.V., Yakushev I.A. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 4. P. 253. https://doi.org/10.1134/S107032841904002X
- 6. Garkul I.A., Zadesenets A.V., Korolkov I.V. et al. // J. Struct. Chem. 2020. V. 61. № 5. P. 719.
- 7. Garkul’ I.A., Zadesenets A.V., Plyusnin P.E. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1571. https://doi.org/10.1134/S003602362010006X
- 8. Smirnova N.S., Khramov E.V., Stolarov I.P. et al. // Intermetallics. 2021. V. 132. P. 107160.
- 9. Nefedov S.E., Vargaftik M.N., Moiseev I.I. // Inorg. Chem. Commun. 2006. V. 9. № 7. P. 755.
- 10. Yakushev I.A., Sosunov E.A., Makarevich Yu.E. et al. // J. Struct. Chem. 2022. V. 63. № 12. P. 103431.
- 11. Pasynskii A.A., Shapovalov S.S., Skabitskii I.V. et al. // Russ. J. Coord. Chem. 2016. V. 42. № 9. P. 608. https://doi.org/10.31857/S0132344X22030069
- 12. Nefedov S.E., Yakushev I.A., Kozitsyna N.Yu. et al. // Inorg. Chem. Commun. 2007. V. 10. № 8. P. 948.
- 13. Nefedov S.E., Kozitsyna N.Yu., Akhmadullina N.S. et al. // Inorg. Chem. Commun. 2011. V. 14. № 4. P. 554.
- 14. Nefedov S.E., Kozitsyna N.Yu., Vargaftik M.N. et al. // Polyhedron. 2009. V. 28. № 1. P. 172.
- 15. Ho P.-H., Hung C.-C., Wang Y.-H. et al. // Asian J. Org. Chem. 2019. V. 8. № 2. P. 275.
- 16. Pasynskii A.A., Shapovalov S.S. // Russ. J. Coord. Chem. 2016. V. 42. № 9. P. 574. https://doi.org/10.1134/S1070328416090050
- 17. Shapovalov S.S., Gordienko A.V., Pasynskii A.A. et al. // Russ. J. Coord. Chem. 2011. V. 37. № 6. P. 447. https://doi.org/10.1134/S1070328411050125
- 18. Yakushev I.A., Dyuzheva M.A., Stebletsova I.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 3. P. 153. https://doi.org/10.1134/S107032842203006X
- 19. Popova A.S., Ogarkova N.K., Shapovalov S.S. et al. // Mendeleev Commun. 2022. V. 32. № 5. P. 576.
- 20. Shmelev M.A., Gogoleva N.V., Makarov D.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 1. P. 1. https://doi.org/10.1134/S1070328420010078
- 21. Nefedov S.E., Perova E.V., Yakushev I.A. et al. // Inorg. Chem. Commun. 2009. V. 12. № 6. P. 454.
- 22. Nefedov S.E., Kushan E.V., Uvarova M.A. et al. // Inorg. Chim. Acta. 2013. V. 395. P. 104.
- 23. Nefedov S.E., Uvarova M.A., Golubnichaya M.A. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 7. P. 733. https://doi.org/10.1134/S0036023614070171
- 24. Kozitsyna N.Yu., Nefedov S.E., Dolgushin F.M. et al. // Inorg. Chim. Acta 2006. V. 359. № 7. P. 2072.
- 25. Perrin D.D., Armarego W.L.F. Purification of Laboratory Chemicals. Oxford: Pergamon, 1988.
- 26. APEX3, SAINT and SADABS. Madison (WI, USA): Bruker AXS Inc., 2016.
- 27. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3.
- 28. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
- 29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- 30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Ap-pl. Crystallogr. 2009. V. 42. № 2. P. 339.
- 31. Huang G.-H., Li J.-M., Huang J.-J. et al. // Chem.- Eur. J. 2014. V. 20. № 18. P. 5240.
- 32. Akhmadullina N.S., Cherkashina N.V., Kozitsyna N.Yu. et al. // Inorg. Chim. Acta. 2009. V. 362. № 6. P. 1943.
- 33. Pinsky M., Avnir D. // Inorg. Chem. 1998. V. 37. № 21. P. 5575.
- 34. Cirera J., Ruiz E., Alvarez S. // Chem. - Eur. J. 2006. V. 12. № 11. P. 3162.
- 35. Janjić G.V., Petrović P.V., Ninković D.B. et al. // J. Mol. Model. 2011. V. 17. № 8. P. 2083.
- 36. Yakushev I.A., Stebletsova I.A., Cherkashina N.V. et al. // J. Struct. Chem. 2021. V. 62. № 9. P. 1411.
- 37. Lord R.C., Merrifield R.E. // J. Chem. Phys. 1953. V. 21. № 1. P. 166.