RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Influence of the Eliminated Ligand Structure on the Reduction Rate of the Cobalt(III) Complexes

PII
10.31857/S0132344X24040039-1
DOI
10.31857/S0132344X24040039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 4
Pages
251-260
Abstract
The reduction of the heteroleptic cobalt(III) complexes with bipyridine ligands of different structures of the model drug molecule is studied by in situ NMR spectroscopy. The nature of the ligand eliminated during reduction is shown to exert a substantial effect on the reduction rate, which indicates that an optimum amount of cobalt should be chosen for the redox-activated delivery of a certain drug.
Keywords
in situ спектроскопия ядерного магнитного резонанса дигидроксикумарин пирокатехин комплексы кобальта редокс-активируемая доставка лекарственных препаратов
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
11

References

  1. 1. Jungwirth U., Kowol C.R., Keppler B.K. et al. // Antioxid. Redox. Signal. 2011. V. 15. P. 1085.
  2. 2. Brown J.M., Wilson W.R. // Nat. Rev. Cancer. 2004. V. 4. P. 437.
  3. 3. Denny W.A. // Cancer Invest. 2004. V. 22. P. 604.
  4. 4. Graf N., Lippard S.J. // Adv. Drug. Deliv. Rev. 2012. V. 64 P. 993.
  5. 5. Ware D.C., Siim B.G., Robinson K.G. et al. // Inorg. Chem. 1991. V. 30. P. 3750.
  6. 6. Craig P.R., Brothers P.J., Clark G.R. et al. // Dalton Trans. 2004. V. 4. P. 611.
  7. 7. Failes T.W., Cullinane C., Diakos C.I. et al. // Chem. Eur. J. 2007. V. 13. P. 2974.
  8. 8. Karnthaler-Benbakka M.S.C., Groza M.S.D., Kryeziu M.K. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 12930.
  9. 9. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  10. 10. Souza I.S.A., Santana S.S., Gomez J.G. et al. // Dalton Trans. 2020. V. 49. P. 16425.
  11. 11. Хакина Е.А., Никовский И.А., Бабакина Д.А. и др. // Коорд. химия. 2023. Т. 49. С. 27 (Khakina E.A., Nikovskii I.A., Babakina D.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 24). https://doi.org/10.1134/S1070328422700105
  12. 12. Cioncoloni G., Senn H.M., Sproules S. et al. // Dalton Trans. 2016. V. 45. P. 15575.
  13. 13. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  14. 14. Ma D.-L., Wu C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.
  15. 15. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  16. 16. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  17. 17. Stamatatos T.C., Bell A., Cooper P. et al. // Inorg. Chem. Commun. 2005. V. 8. P. 533.
  18. 18. Alvarez S. // Chem. Rev. 2015. V. 115. P. 13447.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library