RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Photoluminescent Lanthanide(III) Complexes Based on 2-[((4-Chlorophenyl)amino)methylene]-5,5-dimethylcyclohexane-1,3-dione

PII
10.31857/S0132344X24050026-1
DOI
10.31857/S0132344X24050026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 5
Pages
296-309
Abstract
Five coordination compounds of the general formula [LnL2(NO3)3]n (Ln3+ = Eu (I), Sm (II), Tb(III), Dy (IV), and Gd (V)) are synthesized from 2-[((4-chlorophenyl)amino)methylene]-5,5-dimethylcyclohexane-1,3-dione (L). The crystal structures of the ligand and complex III are determined by X-ray diffraction (XRD) of single crystals (CIF files CCDC nos. 2298715 (L) and 2298716 (III)). Complex III is polymeric due to the bidentate-bridging coordination of the ligand by the oxygen atoms of the cyclohexanedione fragment, and the coordination number of the central atom is ten. According to the phase XRD data, all synthesized polycrystalline compounds are isostructural to the single crystals of complex III. The photoluminescence properties of the ligand and coordination compounds in the polycrystalline state are studied. The energy transfer from the ligand to lanthanide(III) ion is shown to proceed via the “antenna” mechanism in the case of the europium(III), samarium(III), and terbium(III) compounds. Among the series of the complexes, the highest quantum yield is observed for compound I (21.9%), and the sensibilization efficiency of the europium(III) complex is 43.5%.
Keywords
комплексы лантанидов(III) β-енаминдион полимерные соединения кристаллическая структура фотолюминесценция
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
14

References

  1. 1. Bünzli J.C.G. // Chem. Rev. 2010. V. 110. № 5. P. 2729.
  2. 2. Aspinall H.C. // Chem. Rev. 2002. V. 102, № 6. P. 1807.
  3. 3. Hasegawa Y., Kitagawa Y., Nakanishi T. // NPG Asia Mater. 2018. V 10. № 4. P. 52.
  4. 4. Bao G., Wen S., Lin G. et al. // Coord. Chem. Rev. 2021. V. 429. Art. 213642.
  5. 5. Wei C., Ma L., Wei H.B. et al. // Sci. China Technol. Sci. 2018. V. 61. № 9. P. 1265.
  6. 6. Armelao L., Quici S. // Coord. Chem. Rev. 2010. V. 254. № 5–6. P. 48705.
  7. 7. Bryleva Y.A., Komarov V.Y., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. № 21. P. 10446.
  8. 8. Bryleva Y.A., Artemʹev A.V., Glinskaya L.A. et al. // J. Struct. Chem. 2021. V. 62. № 2. P. 265.
  9. 9. Bryleva Y.A., Artemʹev A.V., Glinskaya L.A. et al. // Inorg. Chim. Acta. 2021. V. 516. Art. 120097.
  10. 10. Artemʹev A.V., Gusarova N.K., Malysheva S.F. et al. // Mendeleev Commun. 2012. V. 22 № 6. P. 294.
  11. 11. Crosby G.A., Whan R.E., Freeman J.J. // J. Phys. Chem. 1962. V. 6., № 12. P. 2493.
  12. 12. Rao V.S., Sauve G. // Comprehensive Organic Functional Group Transformations. 1995. V. 2. P. 737.
  13. 13. Chiara J.L. // Comprehensive Organic Functional Group Transformations II. 2005. P. 709.
  14. 14. Lue P., Greenhill J.V. // Adv. Heterocycl. Chem. 1996. V. 67. № C. P. 207.
  15. 15. Aly A.A., Hassan A.A. // Adv. Heterocycl. Chem. 2014. V. 112. P. 145.
  16. 16. Ebenezer W.J., Wight P. // ChemInform. 1996. P. 20576.
  17. 17. Liu T., Wan J.P., Liu Y. // Chem. Commun. 2021. V. 57. № 72. P. 9112.
  18. 18. Yu T., Ji F., Huang D. et al. // Org. Chem. Front. 2021. V. 8. № 20. P. 5716.
  19. 19. Wan J.P., Cao S., Liu Y. // Org. Lett. 2016. V. 18. № 23. P. 6034.
  20. 20. Stanovnik B. // Eur. J. Org. Chem. 2019. V. 2019. № 31–32. P. 5120.
  21. 21. Gao Y., Liu Y., Wan J.P. // J. Org. Chem. 2019. V. 84. № 4. P. 2243.
  22. 22. Edafiogho I.O., Kombian S.B. // J. Pharm. Sci. 2007. V. 96. № 10. P. 2509.
  23. 23. Bimoussa A., Oubella A., Hachim M.E. et al. // J. Mol. Struct. 2021. V. 1241. Art. 130622.
  24. 24. Masaret G.S. // ChemistrySelect. 2021. V. 6. № 5. P. 974.
  25. 25. Eddington N.D., Cox D.S., Khurana M. et al. // Eur. J. Med. Chem. 2003. V. 38. № 1. P. 49.
  26. 26. Anderson A.J., Nicholson J.M., Bakare O. et al. // Bioorg. Med. Chem. 2006. V. 14. № 4. P. 997.
  27. 27. Amaye I.J., Harper T.L., Jackson-Ayotunde P. // J. Fluor. Chem. 2021. V. 251. Art. 109886.
  28. 28. Li H., Shu H., Wang X. et al. // Org. Mater. 2020. V. 02. № 1. P. 033.
  29. 29. Li H., Shu H., Liu Y. et al. // Adv. Opt. Mater. 2019. V. 7. № 8. Art. 1801719.
  30. 30. Smirnova K.S., Ivanova E.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2021. V. 525. Art. 120490.
  31. 31. Smirnova K.S., Ivanova E.A., Eltsov I.V. et al. // Polyhedron. 2022. V. 227. Art. 116122.
  32. 32. Smirnova K.S., Ivanova E.A., Pozdnyakov I.P. et al. // Inorganica Chim. Acta. 2022. V. 542. Art. 121107.
  33. 33. Jiang H., Li Y., Sun M. et al. // Arkivoc. Arkat. 2020. V. 2020. № 6. P. 1.
  34. 34. Mohareb R.M., Manhi F.M., Mahmoud M.A.A. et al. // Med. Chem. Res. 2020. V. 29. № 8. P. 1536.
  35. 35. Van Tinh D., Fischer M., Stadlbauer W. // J. Heterocycl. Chem. 1996. V. 33. № 3. P. 905.
  36. 36. Rather M.A., Lone A.M., Teli B. et al. // Medchemcomm. 2017. V. 8. № 11. P. 2133.
  37. 37. Wang J.M., Asami T., Che F.S. et al. // J. Agric. Food Chem. 1997. V. 45. № 7. P. 2728.
  38. 38. Wolfbeis O.S., Erich Ziegler E.Z. // Z. Naturforsch. B. 1976. V. 31. № 11. P. 1519.
  39. 39. Zacharias G., Wolfbeis O.S., Junek H. // Monatsh. Chem. 1974. V. 105. № 6. P. 1283.
  40. 40. Fossa P., Menozzi G., Dorigo P. et al. // Bioorg. Med. Chem. 2003. V. 11. № 22. P. 4749.
  41. 41. Frolov K.A., Dotsenko V.V., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2013. V. 49. № 9. P. 1301.
  42. 42. Komkov A. V., Prezent M.A., Ignatenko A. V. et al. // Russ. Chem. Bull. 2006. V. 55. № 11. P. 2085.
  43. 43. Dotsenko V. V., Krivokolysko S.G., Chernega A.N. et al. // Russ. Chem. Bull. 2002. V. 51. № 8. P. 1556.
  44. 44. Dotsenko V.V., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2013. V. 48. № 10. P. 1568.
  45. 45. Dotsenko V.V., Frolov K.A., Krivokolysko S.G. et al. // Chem. Heterocycl. Compd. 2013. V. 49. № 3. P. 440.
  46. 46. Grannik V.G., Shanazarov A.K., Solovʹeva N.P. et al. // Chem. Heterocycl. Compd. 1987. V. 23. № 11. P. 1171.
  47. 47. Qin J.H., Han X.D. // Z. Krist. New Cryst. Struct. 2012. V. 227. № 1. P. 7.
  48. 48. Eremina Y.A., Ermakova E.A., Sukhikh T.S. et al. // J. Struct. Chem. 2021. V. 62. № 2. P. 309.
  49. 49. Yang L.W., Liu S., Rettig S.J. et al. // Inorg. Chem. 1995. V. 34. № 19. P. 4921.
  50. 50. CrysAlisPro 1.171.38.46. The Woodlands (TX, USA): Rigaku Oxford Diffraction, 2015.
  51. 51. APEX2 (version 2.0), SAINT (version 8.18c) and SADABS (version 2.11), Madison (WI, USA): Bruker Advanced X-ray Solutions, 2000–2012.
  52. 52. Sheldrick G.M. // Acta Crystalljgr. A. 2015. V. 71. P. 3.
  53. 53. Sheldrick G.M. // Acta Crystalljgr. C. 2015. V. 71. P. 3.
  54. 54. Dolomanov O.V., Bourhis L.J., Gildea R.J.., et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  55. 55. Werts M.H.V., Jukes R.T.F., Verhoeven J.W. // Phys. Chem. Chem. Phys. 2002. V. 4. № 9. P. 1542.
  56. 56. Werts M.H.V. Luminescent Lanthanide Complexes: Visible Light Sensitised Red and Near-infrared Luminescence. Univ. of Amsterdam, 2000. 147 p.
  57. 57. Andres J., Chauvin A.-S. // Encycl. Inorg. Bioinorg. Chem. 2012. P. 1.
  58. 58. Klink S.I., Hebbink G.A., Grave L. et al. // J. Phys. Chem. A. 2002. V. 106 № 15. P. 3681.
  59. 59. Bünzli J.-C.G., Eliseeva S.V. // Lanthanide Luminescence / Hänninen P., Härmä H. (eds). 2010. V. 7. P. 1.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library