- PII
- 10.31857/S0132344X24050026-1
- DOI
- 10.31857/S0132344X24050026
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 50 / Issue number 5
- Pages
- 296-309
- Abstract
- Five coordination compounds of the general formula [LnL2(NO3)3]n (Ln3+ = Eu (I), Sm (II), Tb(III), Dy (IV), and Gd (V)) are synthesized from 2-[((4-chlorophenyl)amino)methylene]-5,5-dimethylcyclohexane-1,3-dione (L). The crystal structures of the ligand and complex III are determined by X-ray diffraction (XRD) of single crystals (CIF files CCDC nos. 2298715 (L) and 2298716 (III)). Complex III is polymeric due to the bidentate-bridging coordination of the ligand by the oxygen atoms of the cyclohexanedione fragment, and the coordination number of the central atom is ten. According to the phase XRD data, all synthesized polycrystalline compounds are isostructural to the single crystals of complex III. The photoluminescence properties of the ligand and coordination compounds in the polycrystalline state are studied. The energy transfer from the ligand to lanthanide(III) ion is shown to proceed via the “antenna” mechanism in the case of the europium(III), samarium(III), and terbium(III) compounds. Among the series of the complexes, the highest quantum yield is observed for compound I (21.9%), and the sensibilization efficiency of the europium(III) complex is 43.5%.
- Keywords
- комплексы лантанидов(III) β-енаминдион полимерные соединения кристаллическая структура фотолюминесценция
- Date of publication
- 15.05.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 14
References
- 1. Bünzli J.C.G. // Chem. Rev. 2010. V. 110. № 5. P. 2729.
- 2. Aspinall H.C. // Chem. Rev. 2002. V. 102, № 6. P. 1807.
- 3. Hasegawa Y., Kitagawa Y., Nakanishi T. // NPG Asia Mater. 2018. V 10. № 4. P. 52.
- 4. Bao G., Wen S., Lin G. et al. // Coord. Chem. Rev. 2021. V. 429. Art. 213642.
- 5. Wei C., Ma L., Wei H.B. et al. // Sci. China Technol. Sci. 2018. V. 61. № 9. P. 1265.
- 6. Armelao L., Quici S. // Coord. Chem. Rev. 2010. V. 254. № 5–6. P. 48705.
- 7. Bryleva Y.A., Komarov V.Y., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. № 21. P. 10446.
- 8. Bryleva Y.A., Artemʹev A.V., Glinskaya L.A. et al. // J. Struct. Chem. 2021. V. 62. № 2. P. 265.
- 9. Bryleva Y.A., Artemʹev A.V., Glinskaya L.A. et al. // Inorg. Chim. Acta. 2021. V. 516. Art. 120097.
- 10. Artemʹev A.V., Gusarova N.K., Malysheva S.F. et al. // Mendeleev Commun. 2012. V. 22 № 6. P. 294.
- 11. Crosby G.A., Whan R.E., Freeman J.J. // J. Phys. Chem. 1962. V. 6., № 12. P. 2493.
- 12. Rao V.S., Sauve G. // Comprehensive Organic Functional Group Transformations. 1995. V. 2. P. 737.
- 13. Chiara J.L. // Comprehensive Organic Functional Group Transformations II. 2005. P. 709.
- 14. Lue P., Greenhill J.V. // Adv. Heterocycl. Chem. 1996. V. 67. № C. P. 207.
- 15. Aly A.A., Hassan A.A. // Adv. Heterocycl. Chem. 2014. V. 112. P. 145.
- 16. Ebenezer W.J., Wight P. // ChemInform. 1996. P. 20576.
- 17. Liu T., Wan J.P., Liu Y. // Chem. Commun. 2021. V. 57. № 72. P. 9112.
- 18. Yu T., Ji F., Huang D. et al. // Org. Chem. Front. 2021. V. 8. № 20. P. 5716.
- 19. Wan J.P., Cao S., Liu Y. // Org. Lett. 2016. V. 18. № 23. P. 6034.
- 20. Stanovnik B. // Eur. J. Org. Chem. 2019. V. 2019. № 31–32. P. 5120.
- 21. Gao Y., Liu Y., Wan J.P. // J. Org. Chem. 2019. V. 84. № 4. P. 2243.
- 22. Edafiogho I.O., Kombian S.B. // J. Pharm. Sci. 2007. V. 96. № 10. P. 2509.
- 23. Bimoussa A., Oubella A., Hachim M.E. et al. // J. Mol. Struct. 2021. V. 1241. Art. 130622.
- 24. Masaret G.S. // ChemistrySelect. 2021. V. 6. № 5. P. 974.
- 25. Eddington N.D., Cox D.S., Khurana M. et al. // Eur. J. Med. Chem. 2003. V. 38. № 1. P. 49.
- 26. Anderson A.J., Nicholson J.M., Bakare O. et al. // Bioorg. Med. Chem. 2006. V. 14. № 4. P. 997.
- 27. Amaye I.J., Harper T.L., Jackson-Ayotunde P. // J. Fluor. Chem. 2021. V. 251. Art. 109886.
- 28. Li H., Shu H., Wang X. et al. // Org. Mater. 2020. V. 02. № 1. P. 033.
- 29. Li H., Shu H., Liu Y. et al. // Adv. Opt. Mater. 2019. V. 7. № 8. Art. 1801719.
- 30. Smirnova K.S., Ivanova E.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2021. V. 525. Art. 120490.
- 31. Smirnova K.S., Ivanova E.A., Eltsov I.V. et al. // Polyhedron. 2022. V. 227. Art. 116122.
- 32. Smirnova K.S., Ivanova E.A., Pozdnyakov I.P. et al. // Inorganica Chim. Acta. 2022. V. 542. Art. 121107.
- 33. Jiang H., Li Y., Sun M. et al. // Arkivoc. Arkat. 2020. V. 2020. № 6. P. 1.
- 34. Mohareb R.M., Manhi F.M., Mahmoud M.A.A. et al. // Med. Chem. Res. 2020. V. 29. № 8. P. 1536.
- 35. Van Tinh D., Fischer M., Stadlbauer W. // J. Heterocycl. Chem. 1996. V. 33. № 3. P. 905.
- 36. Rather M.A., Lone A.M., Teli B. et al. // Medchemcomm. 2017. V. 8. № 11. P. 2133.
- 37. Wang J.M., Asami T., Che F.S. et al. // J. Agric. Food Chem. 1997. V. 45. № 7. P. 2728.
- 38. Wolfbeis O.S., Erich Ziegler E.Z. // Z. Naturforsch. B. 1976. V. 31. № 11. P. 1519.
- 39. Zacharias G., Wolfbeis O.S., Junek H. // Monatsh. Chem. 1974. V. 105. № 6. P. 1283.
- 40. Fossa P., Menozzi G., Dorigo P. et al. // Bioorg. Med. Chem. 2003. V. 11. № 22. P. 4749.
- 41. Frolov K.A., Dotsenko V.V., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2013. V. 49. № 9. P. 1301.
- 42. Komkov A. V., Prezent M.A., Ignatenko A. V. et al. // Russ. Chem. Bull. 2006. V. 55. № 11. P. 2085.
- 43. Dotsenko V. V., Krivokolysko S.G., Chernega A.N. et al. // Russ. Chem. Bull. 2002. V. 51. № 8. P. 1556.
- 44. Dotsenko V.V., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2013. V. 48. № 10. P. 1568.
- 45. Dotsenko V.V., Frolov K.A., Krivokolysko S.G. et al. // Chem. Heterocycl. Compd. 2013. V. 49. № 3. P. 440.
- 46. Grannik V.G., Shanazarov A.K., Solovʹeva N.P. et al. // Chem. Heterocycl. Compd. 1987. V. 23. № 11. P. 1171.
- 47. Qin J.H., Han X.D. // Z. Krist. New Cryst. Struct. 2012. V. 227. № 1. P. 7.
- 48. Eremina Y.A., Ermakova E.A., Sukhikh T.S. et al. // J. Struct. Chem. 2021. V. 62. № 2. P. 309.
- 49. Yang L.W., Liu S., Rettig S.J. et al. // Inorg. Chem. 1995. V. 34. № 19. P. 4921.
- 50. CrysAlisPro 1.171.38.46. The Woodlands (TX, USA): Rigaku Oxford Diffraction, 2015.
- 51. APEX2 (version 2.0), SAINT (version 8.18c) and SADABS (version 2.11), Madison (WI, USA): Bruker Advanced X-ray Solutions, 2000–2012.
- 52. Sheldrick G.M. // Acta Crystalljgr. A. 2015. V. 71. P. 3.
- 53. Sheldrick G.M. // Acta Crystalljgr. C. 2015. V. 71. P. 3.
- 54. Dolomanov O.V., Bourhis L.J., Gildea R.J.., et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- 55. Werts M.H.V., Jukes R.T.F., Verhoeven J.W. // Phys. Chem. Chem. Phys. 2002. V. 4. № 9. P. 1542.
- 56. Werts M.H.V. Luminescent Lanthanide Complexes: Visible Light Sensitised Red and Near-infrared Luminescence. Univ. of Amsterdam, 2000. 147 p.
- 57. Andres J., Chauvin A.-S. // Encycl. Inorg. Bioinorg. Chem. 2012. P. 1.
- 58. Klink S.I., Hebbink G.A., Grave L. et al. // J. Phys. Chem. A. 2002. V. 106 № 15. P. 3681.
- 59. Bünzli J.-C.G., Eliseeva S.V. // Lanthanide Luminescence / Hänninen P., Härmä H. (eds). 2010. V. 7. P. 1.