RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Acyclic Diaminocarbene Platinum(IV) Complexes Synthesized by the Oxidative Addition of MeI and I2

PII
10.31857/S0132344X24050047-1
DOI
10.31857/S0132344X24050047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 5
Pages
322-333
Abstract
The oxidative addition of methyl iodide or molecular iodine to the bis(С,N-chelate) deprotonated diaminocarbene platinum(II) complexes [Pt{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2] (Ar = C6H3-2,6-Me2 (Xyl), C6H2-2,4,6-Me3 (Mes), and C6H4-4-Me (pTol)) affords the corresponding platinum(IV) derivatives in a yield of 89–99%. The addition of CF3CO2H is accompanied by the protonation of the nitrogen atoms of the diaminocarbene fragment to form the cationic complexes [[PtI(X)-{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2]CF3CO2H (X = Me, I). The structures of the compounds are determined by elemental analysis; high resolution mass spectrometry with electrospray ionization (ESI HRMS); IR spectroscopy; 1H, 13C{1H}, 19F{1H}, and 195Pt{1H} NMR spectroscopy; 2D NMR spectroscopy (1H,1Н COSY, 1H,1Н NOESY, 1H,13C HSQC, 1H,13C HMBC, 1H,15N HSQC, 1H,15N HMBC), and X-ray diffraction (XRD) and thermogravimetric analyses. The synthesized platinum(IV) complexes are thermally stable to 200–260°C and are electroneutral molecules with the octahedral coordination sphere formed by two deprotonated diaminocarbene C,N-chelate substituents and iodine and methyl or two iodine atoms localized in the apical positions.
Keywords
комплексы платины ациклические диаминокарбеновые лиганды окислительное присоединение протонирование
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
15

References

  1. 1. Labinger J.A. // Organometallics. 2015. V. 34. № 20. P. 4784.
  2. 2. Crespo M., Martínez M., Nabavizadeh S.M. et al. // Coord. Chem. Rev. 2014. V. 279. P. 115.
  3. 3. Rendina L.M., Puddephatt R.J. // Chem. Rev. 1997. V. 97. № 6. P. 1735.
  4. 4. Shahsavari H.R., Babadi Aghakhanpour R., Babaghasabha M. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 20. P. 2682.
  5. 5. Shahsavari H.R., Babadi Aghakhanpour R., Fereidoonnezhad M. // New J. Chem.. 2018. V. 42. № 4. P. 2564.
  6. 6. Hamidizadeh P., Nabavizadeh S.M., Hoseini S.J. // Dalton Trans. 2019. V. 48. № 10. P. 3422.
  7. 7. Chamyani S., Shahsavari H.R., Abedanzadeh S. et al. // Appl. Organomet. Chem. 2019. V. 33. № 1. P. 4674.
  8. 8. Habibzadeh S., Rashidi M., Nabavizadeh S.M. et al. // Organometallics. 2010. V. 29. № 1. P. 82.
  9. 9. Shahsavari H.R., Aghakhanpour R.B., Hossein-Abadi M. et al. // Appl. Organomet. Chem. 2018. V. 32. № 4. P. 4216.
  10. 10. Aghakhanpour R.B., Nabavizadeh S.M., Mohammadi L., et al. // J. Organomet. Chem. 2015. V. 781. №. P. 47.
  11. 11. Nahaei A., Rasekh A., Rashidi M., et al. // J. Organomet. Chem. 2016. V. 815–816. P. 35.
  12. 12. Hoseini S.J., Mohamadikish M., Kamali K. et al. // Dalton Trans. 2007. V. 17. P. 1697.
  13. 13. Tsoureas N., Danopoulos A.A. // J. Organomet. Chem. 2015. V. 775. P. 178.
  14. 14. Bennett M.A., Bhargava S.K., Ke M. et al. // Dalton Transa. 2000. V. 20. P. 3537.
  15. 15. Kinzhalov M., Luzyanin K. // Russ. J. Inorg. Chem. 2022. V. 67. P. 48.
  16. 16. Serra D., Cao P., Cabrera J., et al. // Organometallics. 2011. V. 30. № 7. P. 1885.
  17. 17. Mastrocinque F., Anderson C.M., Elkafas A.M. et al. // J. Organomet. Chem. 2019. V. 880. P. 98.
  18. 18. Prokopchuk E.M., Puddephatt R.J. // Organometallics. 2003. V. 22. № 3. P. 563.
  19. 19. Katkova S.A., Kinzhalov M.A., Tolstoy P.M., et al. // Organometallics. 2017. V. 36. № 21. P. 4145.
  20. 20. Kashina M.V., Karcheuski A.A., Kinzhalov et al. // Molecules 2023. V. 28 № 23. P. 7764. https://doi.org/ 10.3390/molecules28237764
  21. 21. Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281.
  22. 22. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  23. 23. Oxford Diffraction, CrysAlis PRO, Yarnton (England): Oxford Diffraction Ltd, 2009.
  24. 24. Kashina M.V., Luzyanin K.V., Katlenok E.A. et al. // Dalton Trans. 2022. V. 51. № 17. P. 6718.
  25. 25. Stuart B.H. Infrared Spectroscopy: Fundamentals and Applications. Wiley, 2004. 208 p.
  26. 26. Fujisawa K., Kobayashi Y., Okano M. et al. // Molecules. 2023. V. 28. № 7. P. 2936.
  27. 27. Akhmadullina N.S., Borissova A.O., Garbuzova I.A. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. № 2. P. 392.
  28. 28. Ghedini M., Pucci D., Crispini A. et al. // Organometallics. 1999. V. 18. № 11. P. 2116.
  29. 29. Expósito J.E., Aullón G., Bardají M. et al. // Dalton Trans. 2020. V. 49. № 38. P. 13326.
  30. 30. Fatemeh N.H., Farasat Z., Nabavizadeh S.M. et al. // J. Organomet. Chem. 2019. V. 880. P. 232.
  31. 31. Jamali S., Czerwieniec R., Kia R. et al. // Dalton Trans. 2011. V. 40. № 36. P. 9123.
  32. 32. Expósito J.E., Álvarez-Paíno M., Aullón G. et al. // Dalton Trans. 2015. V. 44. № 36. P. 16164.
  33. 33. Shafaatian B., Heidari B. // J. Organomet. Chem. 2015. V. 780. P. 34.
  34. 34. Frauhiger B.E., White P.S., Templeton J.L. // Organometallics. 2012. V. 31. № 1. P. 225.
  35. 35. Altus K.M., Bowes E.G., Beattie D.D. et al. // Organometallics. 2019. V. 38. № 10. P. 2273.
  36. 36. Katkova S.A., Kozina D.O., Kisel K.S. et al. // Dalton Trans. 2023. V. 52. № 14. P. 4595.
  37. 37. Owen J.S., Labinger J.A., Bercaw J.E. // J. Am. Chem. Soc. 2004. V. 126. № 26. P. 8247.
  38. 38. Hardman N.J., Abrams M.B., Pribisko M.A. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 15. P. 1955.
  39. 39. Meyer D., Ahrens S., Strassner T. // Organometallics. 2010. V. 29. № 15. P. 3392.
  40. 40. Kelly M.E., Dietrich A., Gómez-Ruiz S. et al. // Organometallics. 2008. V. 27. № 19. P. 4917.
  41. 41. Maidich L., Zucca A., Clarkson G.J. et al. // Organometallics. 2013. V. 32. № 11. P. 3371.
  42. 42. Shaw P.A., Rourke J.P. // Dalton Trans. 2017. V. 46. № 14. P. 4768.
  43. 43. Zhang F., Broczkowski M.E., Jennings M.C. et al. // Can. J. Chem. 2005. V. 83. № 6-7. P. 595.
  44. 44. Shaw P.A., Phillips J.M., Clarkson G.J. et al. // Dalton Trans. 2016. V. 45. № 28. P. 11397.
  45. 45. Yahav A., Goldberg I., Vigalok A. // Organometallics. 2005. V. 24. № 23. P. 5654.
  46. 46. Westra A.N., Bourne S.A., Koch K.R. // Dalton Trans. 2005. № 17. P. 2916.
  47. 47. Westra A.N., Bourne S.A., Esterhuysen C. et al. // Dalton Trans. 2005. V. № 12. P. 2162.
  48. 48. Goldberg K.I., Yan J., Breitung E.M. // J Am. Chem. Soc. 1995. V. 117. № 26. P. 6889.
  49. 49. Baar C.R., Jenkins H.A., Vittal J.J. et al. // Organometallics. 1998. V. 17. № 13. P. 2805.
  50. 50. Fischer E.O., Maasböl A. // Chem. Ber. 1967. V. 100. № 7. P. 2445.
  51. 51. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441.
  52. 52. Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library