RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Pseudopolymeric Thallium(I) Di-iso-pentyl Dithiophosphate, [Tl{S2P(O-iso5H11)2}]: Synthesis, Structural Organization (Role of Secondary Tl⋅⋅⋅S and Tl⋅⋅⋅O Interactions in Supramolecular Self-Assembly), and Thermal Behavior

PII
10.31857/S0132344X24080063-1
DOI
10.31857/S0132344X24080063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 8
Pages
520-532
Abstract
Crystalline pseudopolymeric thallium(I) di-iso-pentyl dithiophosphate (Dtph), [Tl{S2P(O-iso-С5H11)2}] (I), is synthesized and characterized in detail by single-crystal XRD (CIF file CCDC no. 2296421), simultaneous thermal analysis (STA), multinuclear (1H, 13C, 31P) NMR and IR spectroscopy. Nonequivalent molecules of two types containing Tl(1) and Tl(2) atoms (hereinafter molecules А and В, respectively) are involved (1 : 1) in the formation of the structure of compound I. In both molecules, the S,S´-anisobidentate coordination of the Dtph ligands (Tl–S bond lengths 3.006–3.092 Å) results in the formation of small-size four-membered metallocycles [TlS2P] (a 'butterfly' conformation) with significantly averaged P–S bond lengths (1.966–1.985 Å). Molecules A and B are structurally ordered upon the construction of supramolecular chains of two types (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅)n and (⋅⋅⋅B⋅⋅⋅B⋅⋅⋅B⋅⋅⋅)n with oppositely directed structural units combined by paired secondary Tl⋅⋅⋅S and Tl⋅⋅⋅O interactions alternating over the chain length. In turn, paired secondary (but weaker) Tl⋅⋅⋅S interactions occur between molecules A and B belonging to two neighboring pseudopolymeric chains. The multiplisity of these interactions provides the formation of double supramolecular ribbons. The thermal behavior of compound I is studied by the STA technique under an argon atmosphere. Thallium(I) tetrathiophosphate Tl3PS4 is identified as the only end product of the thermolysis of compound I. Electron probe microanalysis (EPMA) and scanning electron microscopy (SEM) are used to study the residual substance.
Keywords
ди-изо-амилдитиофосфат таллия(I) кристаллическая структура супрамолекулярная самоорганизация вторичные взаимодействия (Tl···S, Tl···O) термическое поведение
Date of publication
15.08.2024
Year of publication
2024
Number of purchasers
0
Views
11

References

  1. 1. Sánchez-Chapul L., Santamaría A., Aschner M. et al. // Front. Genet. 2023. V. 14. Art. 1168713.
  2. 2. Abdolmaleki S., Ghadermazi M., Aliabadi A. // Sci. Rep. 2021. V. 11. Art. 15699.
  3. 3. Sivagurunathan G.S., Ramalingam K., Rizzoli C. // Polyhedron. 2013. V. 65. P. 316.
  4. 4. Gomathi G., Thirumaran S., Ciattini S. // Polyhedron. 2015. V. 102. P. 424.
  5. 5. Manar K.K., Rajput G., Yadav M.K. et al. // ChemistrySelect. 2016. V. 1. № 18. P. 5733.
  6. 6. Liu X.Z., Xue H., Zhao J. et al. // Rare Metals. 1998. V. 17. № 3. P. 232.
  7. 7. Иванов А.В., Конфедератов В.А., Герасименко А.В., Ларссон А.-К. // Коорд. химия. 2009. Т. 35. № 11. С. 867 (Ivanov A.V., Konfederatov V.A., Gerasimenko A.V., Larsson A.-C. // Russ. J. Coord. Chem. 2009. V. 35. № 11. P. 857). https://doi.org/10.1134/S1070328409110116
  8. 8. Родина Т.А., Иванов А.В., Конфедератов В.А. и др. // Журн. неорган. химии. 2009. Т. 54. № 11. С. 1858 (Rodina T.A., Ivanov A.V., Konfederatov V.A. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1779). https://doi.org/10.1134/S0036023609110138
  9. 9. Firdoos T., Kumar P., Radha A. et al. // New J. Chem. 2022. V. 46. № 2. P. 832.
  10. 10. Firdoos T., Kumar P., Sharma N. et al. // CrystEngComm. 2023. V. 25. № 26. P. 3777.
  11. 11. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
  12. 12. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  13. 13. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 339.
  14. 14. Казицына Л.Α., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
  15. 15. Rockett J. // Appl. Spectrosc. 1962. V. 16. № 2. P. 39.
  16. 16. Mehrotra R.C., Srivastava G., Chauhan B.P.S. // Coord. Chem. Rev. 1984. V. 55. № 3. P. 207.
  17. 17. Беллами Л. Инфракрасные спектры сложных молекул. М.: ИЛ, 1963. 590 с.
  18. 18. Ahmad R., Srivastava G., Mehrotra R.C. // Inorg. Chim. Acta. 1984. V. 89. № 1. P. 41.
  19. 19. Rodina T.A., Korneeva E.V., Antzutkin O.N., Ivanov A.V. // Spectrochim. Acta. A. 2015. V. 149. P. 881.
  20. 20. Rodina T.A., Ivanov A.V., Gerasimenko A.V. et al. // Polyhedron. 2011. V. 30. № 13. P. 2210.
  21. 21. Larsson A.-C., Ivanov A.V., Antzutkin O.N., Forsling W. // J. Colloid Interface Sci. 2008. V. 327. № 2. P. 370.
  22. 22. Иванов А.В., Анцуткин О.Н., Форшлинг В., Родионова Н.А. // Коорд. химия. 2003. Т. 29. № 5. С. 323 (Ivanov A.V., Antzutkin O.N., Forsling W., Rodionova N.A. // Russ. J. Coord. Chem. 2003. V. 29. № 5. P. 301). https://doi.org/10.1023/A:1023611415080
  23. 23. Иванов А.В., Ларссон А.-К., Родионова Н.А. и др. // Журн. неорган. химии. 2004. Т. 49. № 3. С. 423 (Ivanov A.V., Larsson A.-C., Rodionova N.A. et al. // Russ. J. Inorg. Chem. 2004. V. 49. № 3. Р. 373).
  24. 24. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1.
  25. 25. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441.
  26. 26. Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006.
  27. 27. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617.
  28. 28. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375.
  29. 29. Allinger N.L., Zhou X., Bergsma J. // J. Mol. Struct. (THEOCHEM.) 1994. V. 312. № 1. P. 69.
  30. 30. Бредюк О.А., Лосева О.В., Иванов А.В. и др. // Коорд. химия. 2017. Т. 43. № 10. С. 602 (Bredyuk O.A., Loseva O.V., Ivanov A.V. et al. // Russ. J. Coord. Chem. 2017. V. 43. № 10. P. 638). https://doi.org/10.1134/S1070328417100013
  31. 31. Andrae H., Blachnik R. // J. Alloys Compd. 1992. V. 189. № 2. P. 209.
  32. 32. Toffoli P., Khodadad P., Rodier N. // Bull. Soc. Chim. Fr. 1981. № 11/12. P. 429.
  33. 33. Wibbelmann C., Brockner W., Eisenmann B., Schäfer H. // Z. Naturforsch. B. 1983. V. 38. № 12. P. 1575.
  34. 34. Lavrentyev A.A., Gabrelian B.V., Nikiforov I.Ya. et al. // Phys. Scripta. 2005. V. T115. P. 162.
  35. 35. Лаврентьев А.А., Габрельян Б.В., Ву В.Т. и др. // Изв. АН. Сер. физ. 2015. Т. 79. № 6. С. 888 (Lavrentyev A.A., Gabrelian B.V., Vu V.T. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. № 6. P. 802). https://doi.org/10.3103/S1062873815060179
  36. 36. Lavrentyev A.A., Gabrelian B.V., Nikiforov I.Ya. et al. // J. Phys. Chem. Solids. 2003. V. 64. № 12. P. 2479.
  37. 37. Лаврентьев А.А., Габрельян Б.В., Ву В.Т. и др. // Журн. структур. химии. 2017. Т. 58. № 6. С. 1268 (Lavrentyev A.A., Gabrelian B.V., Vu V.T. et al. // J. Struct. Chem. V. 58. № 6. P. 1220). https://doi.org/10.1134/S002247661706021X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library