- PII
- 10.31857/S0132344X24100048-1
- DOI
- 10.31857/S0132344X24100048
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 50 / Issue number 10
- Pages
- 669-678
- Abstract
- The reaction of lithium amide LiN(Si(Me)3)2 and ditopic heterocyclic ligand benzo[1,2-d:4,5-d′]bis(thiazole)-2,6(3H,7H)-dithione (H2L) in dimethoxyethane (DME) affords the binuclear molecular complex Li2L(DME)4 (I). New compounds [[Li2L(ДМСО)4 • (ДМСО)2]n (II) and [Li2L(ДМСО)4 • (ТГФ)2]n (III) are prepared by the recrystallization of compound I using a DMSO–diethyl ether or DMSO/THF mixture of solvents, respectively. According to the XRD data, these compounds are one-dimensional metalorganic frameworks (MOFs) differed by the arrangement of the bis(thiazole) fragments relative to each other and the Li2O2 fragment in the polymer chain, which affects the luminescence properties. The molecular structures of compounds I–III are determined by XRD (CIF files CCDC nos. 2334192 (I), 2334193 (II), and 2334194 (III)).
- Keywords
- 2-меркаптобензотиазол фосфоресценция флуоресценция гетероциклические лиганды литий координационный полимер
- Date of publication
- 15.10.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 10
References
- 1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
- 2. Zhang Y., Yuan S., Day G. et al // Coord. Chem. Rev. 2018. V. 354. P. 28.
- 3. Yu. X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. 2023. V. 135. Art. e202306680.
- 4. Liu. Y. Y., Zhang., J., Sun L. X. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 396.
- 5. Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012. V. 112. P. 1196.
- 6. Suh M. P., Park H. J., Prasad T.K. et al. // Chem. Rev. 2012. V. 112. P. 782.
- 7. Sapchenko S.A., Barsukova M.O., Belosludov R.V. et al // Inorg. Chem. 2012. V. 58. P. 6811.
- 8. Abrahams B.F., Grannas M.J., Hudson T.A. et al. // Angew. Chem. Int. Ed. 2010. V. 122. P. 1105.
- 9. Xie L-H., Lin J-B., Liu X.M. et al. // Inorg. Chem. 2010. V. 49. P. 1158.
- 10. White K.F., Abrahams B.F., Babarao R. et al. // Chem. Eur. J. 2015. V. 21. P. 18057.
- 11. Wang C., Zhang T., Lin W. // Chem. Rev. 2012. V. 112. P. 1084.
- 12. Wang X., Wang Y., Wang Y. et al. // Chem. Commun. 2019. V. 56. P. 233.
- 13. Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
- 14. Lestar M., Lusi M., O’Leary A. et al. // CrystEngComm. 2018. V. 20. P. 5940.
- 15. Gou L., Zhang H.X., Fan X.Y. et al. // Inorg. Chim. Acta. 2013. V. 394. P.10.
- 16. Xiang J., Chang C., Li M. et al. // Cryst. Growth. Des. 2008. V. 8. P. 280.
- 17. Chen H., Armand M., Courty M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 8984.
- 18. Yeung H.H.M., Kosa M., Parrinello M. et al. // Cryst. Growth. Des. 2011. V. 11. P. 221.
- 19. Walker W., Grugeon S., Vezin H. et al. // Electrochem. Commun. 2010. V. 12. P. 1348.
- 20. Liu, R.B. Zhu, J., Dai Y. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 569.
- 21. Zhao X., Shimazu M.S., Chen X. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6208.
- 22. Cheng P.C., Lin W.C., Tseng F.S. et al. // Dalton Trans. 2013. V. 42. P. 2765.
- 23. Thuéry P. // CrystEngComm. 2014. V. 16. P. 1724.
- 24. White K.F., Abrahams B.F., Hudson T.A. et al. // ChemРlusСhem. 2016. V. 81. P. 877.
- 25. Pugh D., Ashworth E., Robertson K. et al. // Cryst. Growth. Des. 2019. V. 19. P. 487.
- 26. Koltunova T.K., Samsonenko D.G., Rakhmanova M.I. // Russ. Chem. Bull. 2015. V. 64. P. 2903.
- 27. Clough A., Zheng S.T., Zhao X. et al. // Cryst. Growth. Des. 2014. V. 14. P. 897.
- 28. Cheng P.C., Li B.H., Tsen F.S. et al. // Polymers. 2019. V. 11. P. 126.
- 29. Zeng R.H., Li X.P., Qiu Y.C. et al. // Electrochem. Commun. 2010. V. 12. P. 1253.
- 30. Tominaka S., Yeung H.H.M., Henke S. et al. // CrystEngComm. 2016. V. 18. P. 398.
- 31. Zhao X., Wu T., Zheng S.T. et al. // Chem. Commun. 2011. V. 47. P. 5536.
- 32. Zheng S.T., Li Y., Wu T. et al. // Chem. Eur. J. 2010. V. 16. P. 13035.
- 33. Chen X., Bu X., Lin Q. et al. // Cryst. Growth. Des. 2016. V. 16. P. 6531.
- 34. Bazyakina N.L., Moskalev M.V., Cherkasov A.V. et al. // CrystEngComm. 2022. V. 24. P. 2297.
- 35. Nadeem M., Bhatti M.H., Yunus U. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 179.
- 36. Abdelbaky M.S.M., Amghouz Z., García-Granda S. et al. // Dalton Trans. 2014. V. 43. P. 5739.
- 37. Abdelbaky M.S.M., Amghouz Z., García-Granda,S. et al. // Polymers. 2016. V. 8. P. 86.
- 38. Rogozhin A.F., Ilichev V.A., Fagin A.A. et al. // New J. Chem. 2022. V. 46. P. 13987.
- 39. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625.
- 40. SAINT. Data Reduction and Correction Program. Version 8.27B. Madison (WI, USA): Bruker AXS, 2014.
- 41. Rigaku Oxford Diffraction. CrysAlis Pro software system. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
- 42. Sheldrick G.M. SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2012.
- 43. Sheldrick G.M. // Acta Crystfllogr. A. 2015. V. 71. P. 3
- 44. Sheldrick G.M. // Acta Crystfllogr. C. 2015. V. 71. P. 3
- 45. Janiak C. // J. Chem. Soc. Dalton. Trans. 2000. P. 3885.
- 46. Zhao W., He Z., Tang B.Z. // Nat. Rev. Mater. 2020. V. 5. P. 869.