RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Ditopic Centrosymmetric Mercaptobenzothiazole Dilithium Salts: From the Molecular Complex to Luminescent 1D Metal-Organic Frameworks

PII
10.31857/S0132344X24100048-1
DOI
10.31857/S0132344X24100048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 10
Pages
669-678
Abstract
The reaction of lithium amide LiN(Si(Me)3)2 and ditopic heterocyclic ligand benzo[1,2-d:4,5-d′]bis(thiazole)-2,6(3H,7H)-dithione (H2L) in dimethoxyethane (DME) affords the binuclear molecular complex Li2L(DME)4 (I). New compounds [[Li2L(ДМСО)4 • (ДМСО)2]n (II) and [Li2L(ДМСО)4 • (ТГФ)2]n (III) are prepared by the recrystallization of compound I using a DMSO–diethyl ether or DMSO/THF mixture of solvents, respectively. According to the XRD data, these compounds are one-dimensional metalorganic frameworks (MOFs) differed by the arrangement of the bis(thiazole) fragments relative to each other and the Li2O2 fragment in the polymer chain, which affects the luminescence properties. The molecular structures of compounds I–III are determined by XRD (CIF files CCDC nos. 2334192 (I), 2334193 (II), and 2334194 (III)).
Keywords
2-меркаптобензотиазол фосфоресценция флуоресценция гетероциклические лиганды литий координационный полимер
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
10

References

  1. 1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
  2. 2. Zhang Y., Yuan S., Day G. et al // Coord. Chem. Rev. 2018. V. 354. P. 28.
  3. 3. Yu. X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. 2023. V. 135. Art. e202306680.
  4. 4. Liu. Y. Y., Zhang., J., Sun L. X. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 396.
  5. 5. Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012. V. 112. P. 1196.
  6. 6. Suh M. P., Park H. J., Prasad T.K. et al. // Chem. Rev. 2012. V. 112. P. 782.
  7. 7. Sapchenko S.A., Barsukova M.O., Belosludov R.V. et al // Inorg. Chem. 2012. V. 58. P. 6811.
  8. 8. Abrahams B.F., Grannas M.J., Hudson T.A. et al. // Angew. Chem. Int. Ed. 2010. V. 122. P. 1105.
  9. 9. Xie L-H., Lin J-B., Liu X.M. et al. // Inorg. Chem. 2010. V. 49. P. 1158.
  10. 10. White K.F., Abrahams B.F., Babarao R. et al. // Chem. Eur. J. 2015. V. 21. P. 18057.
  11. 11. Wang C., Zhang T., Lin W. // Chem. Rev. 2012. V. 112. P. 1084.
  12. 12. Wang X., Wang Y., Wang Y. et al. // Chem. Commun. 2019. V. 56. P. 233.
  13. 13. Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
  14. 14. Lestar M., Lusi M., O’Leary A. et al. // CrystEngComm. 2018. V. 20. P. 5940.
  15. 15. Gou L., Zhang H.X., Fan X.Y. et al. // Inorg. Chim. Acta. 2013. V. 394. P.10.
  16. 16. Xiang J., Chang C., Li M. et al. // Cryst. Growth. Des. 2008. V. 8. P. 280.
  17. 17. Chen H., Armand M., Courty M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 8984.
  18. 18. Yeung H.H.M., Kosa M., Parrinello M. et al. // Cryst. Growth. Des. 2011. V. 11. P. 221.
  19. 19. Walker W., Grugeon S., Vezin H. et al. // Electrochem. Commun. 2010. V. 12. P. 1348.
  20. 20. Liu, R.B. Zhu, J., Dai Y. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 569.
  21. 21. Zhao X., Shimazu M.S., Chen X. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6208.
  22. 22. Cheng P.C., Lin W.C., Tseng F.S. et al. // Dalton Trans. 2013. V. 42. P. 2765.
  23. 23. Thuéry P. // CrystEngComm. 2014. V. 16. P. 1724.
  24. 24. White K.F., Abrahams B.F., Hudson T.A. et al. // ChemРlusСhem. 2016. V. 81. P. 877.
  25. 25. Pugh D., Ashworth E., Robertson K. et al. // Cryst. Growth. Des. 2019. V. 19. P. 487.
  26. 26. Koltunova T.K., Samsonenko D.G., Rakhmanova M.I. // Russ. Chem. Bull. 2015. V. 64. P. 2903.
  27. 27. Clough A., Zheng S.T., Zhao X. et al. // Cryst. Growth. Des. 2014. V. 14. P. 897.
  28. 28. Cheng P.C., Li B.H., Tsen F.S. et al. // Polymers. 2019. V. 11. P. 126.
  29. 29. Zeng R.H., Li X.P., Qiu Y.C. et al. // Electrochem. Commun. 2010. V. 12. P. 1253.
  30. 30. Tominaka S., Yeung H.H.M., Henke S. et al. // CrystEngComm. 2016. V. 18. P. 398.
  31. 31. Zhao X., Wu T., Zheng S.T. et al. // Chem. Commun. 2011. V. 47. P. 5536.
  32. 32. Zheng S.T., Li Y., Wu T. et al. // Chem. Eur. J. 2010. V. 16. P. 13035.
  33. 33. Chen X., Bu X., Lin Q. et al. // Cryst. Growth. Des. 2016. V. 16. P. 6531.
  34. 34. Bazyakina N.L., Moskalev M.V., Cherkasov A.V. et al. // CrystEngComm. 2022. V. 24. P. 2297.
  35. 35. Nadeem M., Bhatti M.H., Yunus U. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 179.
  36. 36. Abdelbaky M.S.M., Amghouz Z., García-Granda S. et al. // Dalton Trans. 2014. V. 43. P. 5739.
  37. 37. Abdelbaky M.S.M., Amghouz Z., García-Granda,S. et al. // Polymers. 2016. V. 8. P. 86.
  38. 38. Rogozhin A.F., Ilichev V.A., Fagin A.A. et al. // New J. Chem. 2022. V. 46. P. 13987.
  39. 39. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625.
  40. 40. SAINT. Data Reduction and Correction Program. Version 8.27B. Madison (WI, USA): Bruker AXS, 2014.
  41. 41. Rigaku Oxford Diffraction. CrysAlis Pro software system. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
  42. 42. Sheldrick G.M. SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2012.
  43. 43. Sheldrick G.M. // Acta Crystfllogr. A. 2015. V. 71. P. 3
  44. 44. Sheldrick G.M. // Acta Crystfllogr. C. 2015. V. 71. P. 3
  45. 45. Janiak C. // J. Chem. Soc. Dalton. Trans. 2000. P. 3885.
  46. 46. Zhao W., He Z., Tang B.Z. // Nat. Rev. Mater. 2020. V. 5. P. 869.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library