RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Complexes R₂Sn(IV)L with Tridentate O,N,O΄-Donor Schiff Bases: Photophysical Properties and Biological Activity

PII
10.31857/S0132344X24110026-1
DOI
10.31857/S0132344X24110026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 11
Pages
753-772
Abstract
New tin(IV) complexes (Ln)SnR2 (R = n-Bu (I, II), t-Bu (III–V), and Ph (VI)) with O,N,O΄-donor Schiff bases are synthesized. The molecular structures of compounds I and IV in the crystalline state are determined by XRD (CIF files CCDC nos. 2309864 (I) and 2309422 (IV)). The photophysical properties of the complexes are studied in comparison with the previously synthesized compounds containing phenyl or ethyl hydrocarbon groups at the tin atom. All compounds luminesce in chloroform: the emission bands are observed in the range from 580 to 638 nm. Both the groups at the tin atom and nature of the substituents in Schiff bases significantly affect the relative quantum yield. The anti/prooxidant activity of (Ln)SnR2 in the reactions with the ABTS (2,2΄-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) radical cation and superoxide radical anion, in the oxidative DNA damage, and during lipid peroxidation in vitro is studied. A weak antibacterial activity against the bacterial strains Staphylococcus aureus ANCC 6538 and E. faecium ATCC 3576 are observed for some compounds. The in vitro antiproliferative properties for a number of the complexes are studied for the HTC-116 and А-549 cancer cell lines. The coordination of the organometallic fragment with the O,N,O΄-tridentate ligands is found to induce a pronounced decrease in the cytotoxicity of the complexes.
Keywords
комплексы олова(IV) тридентатные основания Шиффа люминесценция антиоксидантная активность цитотоксичность
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
11

References

  1. 1. Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
  2. 2. Пискунов А.В., Трофимова О.Ю., Пискунова М.С. и др. // Коорд. химия. 2018. Т. 44. № 1. С. 49 (Piskunov A.V., Trofimova O.Yu., Piskunova M.S. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 138). https://doi.org/10.1134/S1070328418020082
  3. 3. Барышникова С.В., Беллан Е.В., Поддельский А.И. и др. // Докл. РАН. 2017. Т. 474. № 1. С. 46. (Baryshnikova S.V., Bellan E.V., Poddel’skii A.I. et al. // Dokl. Chem. 2017. V. 474. P. 101). https://doi.org/10.1134/S0012500817050019
  4. 4. Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al. // Eur. J. Inorg. Chem. 2016. P. 5230. https://doi.org/10.1002/ejic.201600885
  5. 5. Ilyakina E.V., Poddel’sky A.I., Fukin G.K. et al. // Inorg. Chem. 2013. V. 52. P. 5284. https://doi.org/10.1021/ic400713p
  6. 6. Piskunov A.V., Trofimova O.Yu., Fukin G.K. et al. // Dalton Trans. 2012. V. 41. P. 10970–10979. https://doi.org/10.1039/C2DT30656E
  7. 7. Чегерев М.Г., Пискунов А.В. // Коорд. химия. 2018. Т. 44. № 2. С. 109 (Chegerev M.G., Piskunov A.V. // Russ. J. Coord. Chem. 2018. V. 44. № 4. Р. 258). https://doi.org/10.1134/S1070328418040036
  8. 8. Пискунов А.В., Пискунова МС., Чегерев М.Г. // Изв. АН. Сер. хим. 2014. № 4. С. 912 (Piskunov A.V., Piskunova M.S., Chegerev M.G. // Russ. Chem. Bull. 2014. V. 63. № 4. P. 912). https://doi.org/10.1007/s11172-014-0527-5
  9. 9. Piskunov A.V., Chegerev M.G., Fukin G.K. // J. Organomet. Chem. 2016. V. 803. P. 51. https://doi.org/10.1016/j.jorganchem.2015.12.012
  10. 10. Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. P. 1087. https://doi.org/10.1002/ejic.201701361
  11. 11. Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. e202300540. https://doi.org/10.1002/ejic.202300540
  12. 12. Banti C.N., Hadjikakoua S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
  13. 13. Zou T., Lum C.T., Lok C.-N. et al. // Chem. Soc. Rev. 2015. V. 44. P. 8786. https://doi.org/10.1039/C5CS00132C
  14. 14. 14. Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermed. 2021. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
  15. 15. Yusof E.N.M., Ravoof T.B.S.A., Page A.J. // Polyhedron. 2021. V. 198. P. 115069. https://doi.org/10.1016/j.poly.2021.115069
  16. 16. Krylova I.V., Labutskaya L.D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/d3nj01993d
  17. 17. Sánchez-Vergara M.E., Hamui L., Gómez E. et al. // Polymers. 2021. V. 13. P. 1023. https://doi.org/10.3390/polym13071023
  18. 18. Sánchez-Vergara M.E., Gómez E., Dircio E.T. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 5255. https://doi.org/10.3390/ijms24065255
  19. 19. Cantón-Díaz A.M., Muñoz-Flores B.M., Moggio I. et al. // New J. Chem. 2018. V. 42. P. 14586. https://doi.org/10.1039/C8NJ02998A
  20. 20. Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
  21. 21. Jiménez-Pérez V.M., García-López M.C., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2015. V. 3. P. 5731. https://doi.org/10.1039/C5TB00717H
  22. 22. López-Espejel M., Gómez-Treviño A., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2021. V. 9. P. 7698. https://doi.org/10.1039/d1tb01405f
  23. 23. Sahu G., Patra S.A., Pattanayak P.D. et al. // Chem. Commun. 2023. V. 59. P. 10188. https://doi.org/10.1039/D3CC01953E
  24. 24. Khan H.Y., Maurya S.K., Siddique H.R. et al. // ACS Omega. 2020. V. 5. P. 15218. https://doi.org/10.1021/acsomega.0c01206
  25. 25. Khatkar P., Asija S. // Phosphorus Sulfur Silicon Relat. Elem. 2017. V. 192. P. 446. https://doi.org/10.1080/10426507.2016.1248762
  26. 26. Jiang W., Qin Q., Xiao X. et al. // J. Inorg. Biochem. 2022. V. 232. P. 111808. https://doi.org/10.1016/j.jinorgbio.2022.111808
  27. 27. Antonenko T.A., Shpakovsky D.B., Vorobyov M.A., et al. // Appl. Organometal. Chem. 2018. V. 32. Art. e4381. https://doi.org/10.1002/aoc.4381
  28. 28. Nikitin E., Mironova E., Shpakovsky D. et al. // Molecules. 2022. V. 27. P. 8359. https://doi.org/10.3390/molecules27238359
  29. 29. Antonenko A., Gracheva Y.A., Shpakovsky D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 2024. https://doi.org/10.3390/ijms24032024
  30. 30. Смолянинов И.В., Бурмистрова Д.А., Поморцева Н.П. и др. // Коорд. химия. 2023. Т. 49. № 3. С. 138 (Smolyaninov I. V., Burmistrova D. A., Pomortseva et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 124). https://doi.org/10.1134/S1070328423700446
  31. 31. Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Molecules. 2022. V. 27. P. 8216. https://doi.org/10.3390/molecules27238216
  32. 32. Гордон А., Форд Р. Спутник химика. Москва: Мир, 1976. 437 c. (Gordon A.J., Ford R.A., The chemistґs companion. New York: A Wiley interscience publication, 1972. 541 pp.).
  33. 33. Lakowicz J. R. Principles of Fluorescence Spectroscopy. Third Edition. New York: Springer, 2006. 673 p.
  34. 34. Re R., Pellergrini N., Proteggente A. et al. // Free Radic. Biol. Med. 1999. V. 26. P. 1231. https://doi.org/10.1016/S0891-5849 (98)00315-3
  35. 35. Sadeer N.B., Montesano D., Albrizio S. et al. // Antioxidants. 2020. V. 9. P. 709. https://doi.org/10.3390/antiox9080709
  36. 36. Строев Е.Н., Макарова В.Г. Практикум по биологической химии. Москва: Высшая школа, 1986. 232 с.
  37. 37. Zhao F., Liu Z.-Q. // J. Phys. Org. Chem. 2009. V. 22. P. 791. https://doi.org/10.1002/poc.1517
  38. 38. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standards, 10th ed. CLSI document M07-A10, Wayne, PA, Clinical and Laboratory Standards Institute, 2015.
  39. 39. CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015.
  40. 40. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc., 1997.
  41. 41. Sheldrick G.M. // Acta Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  42. 42. Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2016.
  43. 43. Perdew J., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
  44. 44. Carlo A., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/10.1063/1.478522
  45. 45. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
  46. 46. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. P. 2999. https://doi.org/10.1021/cr9904009
  47. 47. Basu S., Masharing C., Das B. // Heteroat. Chem. 2012. V. 23. P. 457. https://doi.org/10.1002/hc.21037
  48. 48. Basu S., Gupta G., Das B. et al. // J. Organomet. Chem. 2010. V. 695. P. 2098. https://doi.org/10.1016/j.jorganchem.2010.05.026
  49. 49. Farfan N., Mancilla T., Santillan R. et al. // J. Organomet. Chem. 2004. V. 689. P. 3481. https://doi.org/10.1016/j.jorganchem.2004.07.053
  50. 50. Tan Y.-X., Zhang Zh.-J, Liu Y. et al. // J. Mol. Struct. 2017. V. 1149. P. 874. https://doi.org/10.1016/j.molstruc.2017.08.058
  51. 51. Garcia-Lopez M.C., Munoz-Flores B.M., Jimenez-Perez V.M. et al. // Dyes Pigm. 2014. V. 106. P. 188. https://doi.org/10.1016/j.dyepig.2014.02.021
  52. 52. Beltran H.I., Damian-Zea C., Hernandez-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
  53. 53. Gonzalez-Hernandez A., Barba V. // Inorg. Chim. Acta. 2018. V. 483. P. 284. https://doi.org/10.1016/j.ica.2018.08.026
  54. 54. Vinayak R., Dey D., Ghosh D. et al. // Appl. Organomet. Chem. 2018, V. 32. Art. e4122. https://doi.org/10.1002/aoc.4122
  55. 55. Budnikova Y.H., Dudkina Y.B., Kalinin A.A. et al. // Electrochim. Acta. 2021. V. 368. P. 137578. https://doi.org/10.1016/j.electacta.2020.137578
  56. 56. Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 9. P. 8319. https://doi.org/10.3390/ijms24098319
  57. 57. Petrosyan V.D., Milaeva E.R., Gracheva Yu.A. et al. // Applied Organomet. Chem. 2002. V. 16. P. 655. https://doi.org/10.1002/aoc.360
  58. 58. Антонова Н. А., Коляда М.Н., Осипова В.П. и др. // Докл. АН. 2008. Т. 419. № 3. С. 342 (Antonova N.A., Kolyada M.N., Osipova V.P. et al. // Doklady Chem. 2008. V. 419. P. 62). https://doi.org/10.1134/s0012500808030051
  59. 59. Devi J., Yadav J., Singh N. // Res. Chem. Intermed. 2019. V. 45. P. 3943. https://doi.org/10.1007/s11164-019-03830-60
  60. 60. Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermediates. 2022. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
  61. 61. Devi J., Pachwania S., Yadav J. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2021. V. 196. P. 119. https://doi.org/10.1080/10426507.2020.1818749
  62. 62. Devi J., Yadav J. // Anti-Cancer Agents Med. Chem. 2018. V. 18. P. 335. https://doi.org/10.2174/1871520617666171106125114
  63. 63. Banti C.N., Hadjikakou S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
  64. 64. Milaeva E.R., Shpakovsky D.B., Gracheva Y.A. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1201. https://doi.org/10.1515/pac-2019-1209
  65. 65. Beltran H.I., Damian-Zea C., Hernández-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
  66. 66. Vinayak D. Dey D. Ghosh D. et al. // Appl. Organometal. Chem. 2017. V. Art. e4122. https://doi.org/10.1002/aoc.4122
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library