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Взаимодействием SbI3 с иодидами катионов семейства пиридиния в смеси ацетонитрила и аце-
тона получены два полимерных иодоантимонатных комплекса –– (1-MePy)[SbI4] (I) и (3-Br-1-
MePy)[SbI4] (II)). Особенности кристаллической структуры были установлены методом рентгено-
структурного анализа). Методом термогравиметрического анализа для соединений I, II оценена их
термическая стабильность. Исходя из спектров диффузного отражения были получены значения
оптической ширины запрещенной зоны.
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Изучение галогенидных комплексов вис-
мута(III) [1–6], сурьмы(III) [7–9] и других
𝑝-элементов [10–14] является одним из инте-
ресных направлений как для координационной
химии, так и для материаловедения. Это связа-
но с попытками создания фотокаталитических
систем [15–19], светоизлучающих устройств
[20–22] и фотодетекторов [23, 24]. Особый интерес
представляют работы в области так называемых
перовскитных солнечных элементов, получивших
развитие в последнее десятилетие [25, 26]. Большая
часть работ в данном направлении основана на
использовании соединений свинца(II), но его ток-
сичность и сравнительно низкая фотостабильность
получаемых комплексов (особенно в виде пленок)
являются факторами, ограничивающими даль-
нейшее развитие этой области. Это стимулирует
изучение возможности использования в фотоволь-
таических устройствах галогенометаллатов других
𝑝-элементов [27–30].

Помимо прикладных аспектов, галогенидные
соединения представляют существенный интерес
с точки зрения фундаментальной химии ввиду
необычайного разнообразия структур комплекс-
ных анионов как дискретного, так и полимерного
строения [8, 32, 33]. Важнейшим фактором, влия-
ющим на состав, строение и, как следствие, свой-
ства галогенидных комплексов металлов, является

природа катиона. Тем не менее общие закономер-
ности “структура–свойство”, позволяющие созда-
вать ГМ с заданными свойствами, до сих пор неиз-
вестны. Единственным методом изучения остается
изучение соединений со структурно родственны-
ми катионами. В этом отношении для синтеза под-
ходят производные пиридина и других азотсодер-
жащих гетероциклических соединений, коммерче-
ски доступные и легко поддающиеся модифика-
ции. Отдельно стоит отметить наличие галогенза-
мещенных катионов, способных вступать в некова-
лентное взаимодействие с анионными комплекса-
ми металлов –– галогенную связь (ГС) [34–38]. Вли-
яние данного фактора активно изучается, в том
числе относительно его применения в фотовольта-
ических системах [39, 40].

Согласно данным Кембриджской структурной
базы данных, число структурно охарактеризо-
ванных изученных иодидных комплексов сурьмы
значительно меньше, нежели иодовисмутатов
(III). В рамках исследования закономерностей
формирования новых галогенидных комплексов
𝑝-элементов нами были получены два комплек-
са сурьмы(III) –– (1-MePy)[SbI4] (I) и (3-Br-1-
MePy)[SbI4] (II)). Особенности кристаллической
структуры и нековалентных контактов в ней были
изучены методом рентгеноструктурного анализа
(РСА). Термическая стабильность изучена методом
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термогравиметрического анализа (ТГА). Из спек-
тров диффузного отражения проведена оценка
запрещенной зоны.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Получение соединений I и II проводили на

воздухе. Иодидные соли 1-метилпиридиния и 3-
бром-1-метилпиридиния были получали взаимо-
действием соответствующих органических основа-
ний (пиридин –– АО “ВЕКТОН”, 99%; 3-бромпи-
ридин –– SigmaAldrich, 99%) с иодистым метилом
(Chemical Line, “ч.”) в ацетонитриле (АО “ВЕК-
ТОН”, “ч.д.а.”) при нагревании 70○C в течение 24 ч.
Иодид сурьмы(III) получали взаимодействием ме-
таллической сурьмы и кристаллического иода в ки-
пящем толуоле.

Синтез (1-MePy){[SbI4]} (I). 50 мг SbI3
(0.10 ммоль) и 24 мг (0.10 ммоль) 1-метилпи-
ридиния иодистого растворяли в 7 мл смеси
растворителей ацетонитрил–ацетон (1 ∶ 1) при
нагревании 70○C в течение 1 ч. После раство-
рения смесь медленно охлаждали до комнатной
температуры и выдерживали в течение суток.
После частичного упаривания растворителя были
получены оранжевые кристаллы. Выход 55%.

Синтез (3-Br-1-MePy){[SbI4]} II. 50 мг SbI3
(0.10 ммоль) и 30 мг (0.10 ммоль) 3-бром-1-метил-
пиридиния иодистого растворяли в 15 мл смеси
растворителей ацетонитрил–ацетон (1 ∶ 1) при на-
гревании 70○C в течение 1 ч. После растворения
смесь медленно охлаждали до комнатной темпера-
туры и выдерживали в течение суток. После ча-
стичного упаривания растворителя были получены
оранжевые кристаллы. Выход 50%.
Найдено, %: C 9.72; Н 1.30; N 1.89.
Для C6H8NI4Sb (I)
вычислено, %: C 9.96; Н 1.11; N 1.94.
Найдено, %: C 8.79; Н 1.10; N 1.79.
Для C6H7NBrI4Sb (II)
вычислено, %: C 8.98; Н 0.88; N 1.75.

РСА монокристаллов I и II был проведен при
150 K на дифрактометре Bruker D8 Venture c де-
тектором CMOS PHOTON III (графитовый моно-
хроматор, Mo𝐾α-излучение, λ = 0.71073 Å, φ- и ω-
сканирование). Интегрирование, учет поглоще-
ния, определение параметров элементарной ячей-
ки проведены с использованием пакета программ
CrysAlisPro. Структуры соединений I и II расшиф-
рованы с использованием программы SHELXT [41]
и уточнены полноматричным методом наимень-
ших квадратов в анизотропном для неводород-
ных атомов приближении по алгоритму SHELXL
2017\1 [42]в программе Olex2 [43]. Позиции ато-
мов водорода органических фрагментов рассчита-
ны геометрически и уточнены по модели “наездни-
ка”. Кристаллографические данные и детали экс-
периментов приведены в табл. 1.

Кристаллографические параметры комлексов I
и II депонированы в Кембриджской базе структур-
ных данных (CCDC № 2346399 и 2346400 соответ-
ственно; https://www.ccdc.cam.ac.uk/structures/).

Рентгенофазовый анализ (РФА). Данные по-
рошкового рентгенофазового анализа были
получены на дифрактометре Bruker D8 Advance
(Cu𝐾α-излучение, LYNXEYE XE-T линейный
детектор, диапазон 2Θ 4○–50○, 0.03○ 2Θ шаг, время
накопления 0.5 с/шаг). Образцы для исследования
готовили следующим образом: поликристал-
лический образец истирали в агатовой ступке
в присутствии гептана, полученную суспензию
наносили на полированную сторону стандартной
кварцевой кюветы. После высыхания гептана
образец представлял собой тонкий ровный слой.
Все пики на дифрактограммах соединений I и II
были проиндицированы по данным рентгено-
структурного анализа, образцы однофазные.

ТГА проводили на приборе TG 209 F1 Iris
(Германия). Измерения проводили в потоке гелия
в интервале температур 25○–450○C при потоке газа
60 мл/мин, скорости нагрева 10 град/мин в откры-
тых алюминиевых тиглях.

Оптические свойства. Измерения спектров для
порошков I и II проводились с использованием си-
стемы, состоящей из спектрометра “Колибри-2”
(ВМК “Оптоэлектроника”, Россия), зонда отраже-
ния/обратного рассеяния QR-400-7 (Ocean Optics,
США), дейтерий-вольфрамовой лампы AvaLight-
DHS (Avantes, Нидерланды).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Соединения I и II получены с использовани-

ем общего для галогенометаллатов подхода. В неза-
висимой части структуры содержатся один кати-
он и один мономерный фрагмент {SbI4}. Данные
фрагменты через общие мостиковые иодидные ли-
ганды μ2-типа связываются в одномерные зигза-
гообразные полимерные цепи. В химии иодидных
комплексов сурьмы(III) данный структурный тип
представлен в литературе несколькими примерами
[27, 28, 44]. В структуре соединения I полимерные
цепи располагаются вдоль кристаллографической
оси 𝑐. Расстояния Sb–Iтерм составляют 2.8064(4),
2.8371(4) Å, Sb–Iμ2 –– 3.1172(4)–3.3915(4) Å. Глав-
ной особенностью I является наличие коротких
контактов I···I на расстоянии 3.7461(4) Å (рис. 1),
что заметно меньше суммы ван-дер-ваальсовых ра-
диусов для атомов иода (3.96 Å [45]). При ана-
лизе КСБД было выявлен ряд соединений сурь-
мы с более короткими контактами между атомами
иода [46–49] с наименьшим из них в соединении
(HРyz)3Sb2I9 ⋅ 2H2O (3.646 Å при 100 K, 3.530 Å при
230 K) [50].

Наличие атомов галогена в катионе соеди-
нения II ведет к заметно большему разнооб-
разию нековалентных контактов. Помимо вза-
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Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I и II

Параметр I II
Брутто-формула I4Sb ⋅ C6H8N I4Sb ⋅ C6H7BrN
𝑀 723.48 802.39
Сингония, пр. группа Моноклинная, 𝑃 21/𝑐 Триклинная, 𝑃1
𝑎, Å 13.2179(9) 7.8193 (5)
𝑏, Å 14.0855(10) 9.4759(6)
𝑐, Å 7.8400(5) 10.9448(6)
α, β, γ, град 90, 105.768(2), 90 74.005(2), 85.411(2),

83.868(2)
𝑉, Å3 1404.73(17) 774.01(8)
Z 4 2
ρ(выч.), г см−3 3.421 3.443
μ, мм−1 10.72 12.31
𝐹(000) 1256 696
Размер кристалла, мм 0.19 × 0.1 × × 0.09 0.12 × 0.08 × × 0.05
Диапазон индексов ℎ𝑘𝑙 −18 ⩽ ℎ ⩽ 17,

−18 ⩽ 𝑘 ⩽ 19, −10 ⩽ 𝑙 ⩽ 10
−11 ⩽ ℎ ⩽ 11,

−13 ⩽ 𝑘 ⩽ 13, −15 ⩽ 𝑙 ⩽ 15
Область сбора данных по θ, град 2.892–29.596 1.938–30.539
(sin θ/λ)max, Å−1 0.695 0.715
Измерено отражений 17093 15132
Независимых отражений 3846 4719
Отражений с 𝐼 > 2σ(𝐼) 3736 4277
𝑅int 0.032 0.035
Число уточняемых параметров/число ограничений 110/0 119/0
𝑅-фактор (все данные) 𝑅1 = 0.0221, w𝑅2 = 0.0470 𝑅1 = 0.0271, w𝑅2 = 0.0487
𝑅-фактор (𝐼 > 2σ(𝐼)) 𝑅1 = 0.0211, w𝑅2 = 0.0467 𝑅1 = 0.0238, w𝑅2 = 0.0473
GOOF по 𝐹 2 1.287 1.058
Остаточная электронная плотность (max/min),
e/Å3

0.77/ − 0.71 1.41/ − 1.92

a

b

I(3)

I(3)

Рис. 1. Кристаллическая упаковка соединения I вдоль кристаллографической оси 𝑐.
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имодействий между атомами иода (I(4)···I(4),
3.8167(4) Å) контакты Br···I связывают один из
терминальных атомов иода и катион на расстоянии
3.7271(6) Å (см. рис. 2; сумма ван-дер-ваальсовых
радиусов Br и I составляет 3.81 Å [45]). Ана-
лиз геометрии нековалентных взаимодействий
в соединениях позволяет отнести контакты
между атомами иода к ГС первого типа [51],
относящейся к эффектам кристаллической упа-
ковки. Например, в комплексе I соответствую-
щий угол равен 136.860(8)○ (Sb(1)–I(3)···I(3)).

Контакт Br···I в соединении II может рассмат-
риваться как ГС типа II –– соответствующие
углы равны 160.375(104)○ (C(3)–Br(1)···I(5)
и 117.71(1)○ (Sb(1)–I(5)···Br(1)). Расстояния
Sb–Iтерм в II равны 2.8300(3)–2.8333(3) Å, Sb–Iμ2 ––
2.9886(3)–3.3065(3) Å.

Стэкинг-взаимодействия между катиона-
ми в полученных структурах формируют па-
раллельные цепи вдоль осей 𝑐 и 𝑎 соответ-
ственно (рис. 3). Расстояния C···C в соеди-

b

c

I(4) I(4)

I(5)

Рис. 2. Контакты Br···I и I···I (пунктир) в кристаллической структуре II. Атомы водорода не показаны.

(a)

(б)

Br
N
C
H

a

b

a

c

Рис. 3. Стэкинг-взаимодействия в структурах соединений I (а) и II (б).
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нении I составляют 3.5284(61)–3.5894(61) Å,
C···N –– 3.5304(54)–3.7820(54) Å. В II не удается
обнаружить cтоль же коротких контактов C···C
и C···N, однако есть контакты с участием ато-
ма Br (C···Br 3.4384(32)–3.8883(37) Å, N···Br
3.5703(24) Å).

На рис. 4 приведено сравнение эксперимен-
тальных дифрактограмм с расчетными. Соедине-
ния были получены в чистом виде. Термическая

стабильность, важный параметр для любых при-
кладных применений, была оценена методом ТГА.
Разложение комплексов I и II начинается при тем-
пературе ∼200○C, происходит в одну стадию без за-
метных ступеней и полностью заканчивается при
температурах около 350 и 300○C (рис. 5).

Спектр диффузного отражения и определение
ширины запрещенной зоны (ШЗЗ) (рис. 6) по ме-
тодике работы Bhattacharyya et al. [52] дает значе-
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Рис. 4. Порошковые дифрактограммы соединений I (а) и II (б); расчетная (синяя) и экспериментальная (красная).
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Рис. 5. Кривые ТГ, ДТГ и ДТА для соединений I (а) и II (б).
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Рис. 6. Спектры диффузного отражения (слева) соединений и расчет ширины запрещенной зоны (справа) для соеди-
нения I.

ния 2.24 и 2.15 эВ для I и II соответственно, что
согласуется с литературными данными; значения
ШЗЗ для иодидных комплексов Sb(III) могут из-
меняться в широких пределах: от рекордно низких
1.55 эВ [44] до почти 2.5 эВ [53].

В результате проведенных исследований бы-
ли синтезированы и структурно охарактеризова-
ны два новых соединения сурьмы(III) с катиона-
ми –– производными пиридина. В кристаллической
структуре соединения II можно отметить наличие
нековалентных взаимодействий между атомами га-
логенов катиона и анионной части. Оба комплекса
демонстрируют достаточно высокую термическую
стабильность.

Авторы заявляют, что у них нет конфликта ин-
тересов.
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1D Polymeric Iodoantimonates(III) with 1-Methylpyridinium and
3-Bromo-1-methylpyridinium Cations: Structures and Properties
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The reactions of SbI3 with iodides of cations of the pyridinium family in a mixture of acetonitrile and ace-
tone afford two polymeric iodoantimonate complexes: (1-MePy)[SbI4] (I) and (3-Br-1-MePy)[SbI4] (II).
Specific features of the crystal structures are determined by X-ray diffraction (XRD). The thermal stability
of compounds I and II is evaluated by thermogravimetry. The optical forbidden bandgaps are estimated
from the diffuse reflectance spectra.

Keywords: XRD, complexes, halide complexes, noncovalent interactions, antimony
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