ОХНМКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

СИНТЕЗ, СТРУКТУРА И СВОЙСТВА КОМПЛЕКСА НИКЕЛЯ(II) С БИСФЕНОЛЯТНЫМ ПИНЦЕРНЫМ N-ГЕТЕРОЦИКЛИЧЕСКИМ КАРБЕНОВЫМ ЛИГАНДОМ

Код статьи
S0132344X25010011-1
DOI
10.31857/S0132344X25010011
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 1
Страницы
3-11
Аннотация
Синтезирован комплекс никеля(II) Ni(L)Py (I) (L = 1,3-бис(3,5-ди-трет-бутил-2-фенолято)- 5,5-диметил-(4,6-дигидропиримидин-2-илиден)), содержащий дианионный связанный N-гетероциклический карбеновый (NHC) бисфенолятный лиганд. В присутствии более сильного основания 4-диметиламинопиридина (DMAP) происходит обменная реакция с заменой пиридина в комплексе I на молекулу DMAP с образованием комплекса Ni(L)(DMAP) (II), кристаллическая структура которого определена методом рентгеновской дифракции. Полученные соединения охарактеризованы при помощи элементного анализа, масс-спектрометрии, ЯМР спектроскопии, а также изучены их спектральные характеристики
Ключевые слова
комплексы никеля (II) N-гетероциклические карбеновые лиганды пинцерные лиганды
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Lapshin I.V., Cherkasov A.V., Lyssenko K.A. et al. // Inorg. Chem. 2022. V. 61. № 24. P. 9147. https://doi.org/10.1021/acs.inorgchem.2c00698
  2. 2. Borré E., Dahm G., Aliprandi A. et al. // Organometallics. 2014. V. 33. № 17. P. 4374. https://doi.org/10.1021/om5003446
  3. 3. Fosu E., Le N., Abdulraheem T. et al. // Organometallics 2024. V. 43. № 4. P. 467. https://doi.org/10.1021/acs.organomet.3c00411
  4. 4. Sheng H., Liu Q., Su X.-D. et al. // Org. Lett. 2020. V. 22. № 18. P. 7187. https://doi.org/10.1021/acs.orglett.0c02523
  5. 5. Li J., Wang L., Zhao Z. et al. // Angew. Chemie Int. Ed. 2020. V. 59. № 21. P. 8210. https://doi.org/10.1002/anie.201916379
  6. 6. Rao J., Dong S., Yang C. et al. // J. Am. Chem. Soc. 2023. V. 145. № 47. P. 25766. https://doi.org/10.1021/jacs.3c09280
  7. 7. Karaaslan M.G., Aktaş A., Gürses C. et al. // Bioorg. Chem. 2020. V. 95. P. 103552. https://doi.org/10.1016/j.bioorg.2019.103552
  8. 8. Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Russ. Chem. Bull. 2017. V. 66. № 9. P. 1529. https://doi.org/10.1007/s11172-017-1920-7
  9. 9. Zhao Q., Meng G., Nolan S.P. et al. // Chem. Rev. 2020. V. 120. № 4. P. 1981. https://doi.org/10.1021/acs.chemrev.9b00634
  10. 10. Sau S.C., Hota P.K., Mandal S.K. et al. // Chem. Soc. Rev. 2020. V. 49. № 4. P. 1233. https://doi.org/10.1039/c9cs00866g
  11. 11. Zhao Q., Han B., Peng C. et al. // Med. Res. Rev. 2024. https://doi.org/10.1002/med.22039
  12. 12. Bellotti P., Koy M., Hopkinson M.N. et al. // Nat. Rev. Chem. 2021. V. 5. № 10. P. 711. https://doi.org/10.1038/s41570-021-00321-1
  13. 13. Ibáñez S., Poyatos M., Peris E. // Acc. Chem. Res. 2020. V. 53. № 7. P. 1401. https://doi.org/10.1021/acs.accounts.0c00312
  14. 14. Ott I. // Adv. Inorg. Chem. 2020. V. 75. P. 121. https://doi.org/10.1016/bs.adioch.2019.10.008
  15. 15. Liang Q., Song D. // Chem. Soc. Rev. 2020. V. 49. № 4. P. 1209. https://doi.org/10.1039/c9cs00508k
  16. 16. Strausser S.L., Jenkins D.M. // Organometallics. 2021. V. 40. № 11. P. 1706. https://doi.org/10.1021/acs.organomet.1c00189
  17. 17. Kashina M.V., Luzyanin K.V., Katlenok E.A. et al. // Dalton Trans. 2022. V. 51. № 17. P. 6718. https://doi.org/10.1039/d2dt00252c
  18. 18. Zhan L., Zhu M., Liu L. et al. // Inorg. Chem. 2021. V. 60. № 21. P. 16035. https://doi.org/10.1021/acs.inorgchem.1c01964
  19. 19. Bernd M.A., Bauer E.B., Oberkofler J. et al. // Dalton Trans. 2020. V. 49. № 40. P. 14106. https://doi.org/10.1039/d0dt02598d
  20. 20. Sánchez A., Sanz-Garrido J., Carrasco C.J. et al. // Inorg. Chim. Acta. 2022. V. 537. P. 120946. https://doi.org/10.1016/j.ica.2022.120946
  21. 21. Li M., Liska T., Swetz A. et al. // Organometallics. 2020. V. 39. № 10. P. 1667. https://doi.org/10.1021/acs.organomet.0c00065
  22. 22. Rendón-Nava D., Angeles-Beltrán D., Rheingold A.L. et al. // Organometallics. 2021. V. 40. № 13. P. 2166. https://doi.org/10.1021/acs.organomet.1c00324
  23. 23. Rivera C., Bacilio-Beltrán H.A., Puebla-Pérez A.M. et al. // New J. Chem. 2022. V. 46. № 29. P. 14221. https://doi.org/10.1039/d2nj02508f
  24. 24. Neshat A., Mastrorilli P., Mobarakeh A.M. // Molecules. 2022. V. 27. № 1. P. 95. https://doi.org/10.3390/molecules27010095
  25. 25. Díez-González S., Marion N., Nolan S.P. // Chem. Rev. 2009. V. 109. № 8. P. 3612. https://doi.org/10.1021/cr900074m
  26. 26. Pearson R.G. // Inorg. Chem. 1973. V. 12. № 3. P. 712. https://doi.org/10.1021/ic50121a052
  27. 27. Pearson R.G. // Inorg. Chem. 1988. V. 27. № 4. P. 734. https://doi.org/10.1021/ic00277a030
  28. 28. Gunanathan C., Milstein D. // Chem. Rev. 2014. V. 114. № 24. P. 12024. https://doi.org/10.1021/cr5002782
  29. 29. Maser L., Vondung L., Langer R. // Polyhedron. 2018. V. 143. P. 28. https://doi.org/10.1016/j.poly.2017.09.009
  30. 30. Taakili R., Canac Y. // Molecules. 2020. V. 25. № 9. P. 2231. https://doi.org/10.3390/molecules25092231
  31. 31. Gandara C., Philouze C., Jarjayes O. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 561. https://doi.org/10.1016/j.ica.2018.06.046
  32. 32. Nolan S.P. // N-Heterocyclic Carbenes Eff. Tools Organomet. Synth. 2014. V. 9783527334. P. 1. https://doi.org/10.1002/9783527671229
  33. 33. Dröge T., Glorius F. // Angew. Chem. Int. Ed. 2010. V. 49. № 39. P. 6940. https://doi.org/10.1002/anie.201001865
  34. 34. Wittwer B., Leitner D., Neururer F.R. et al. // Polyhedron. 2024. V. 250. P. 116786. https://doi.org/10.1016/j.poly.2023.116786
  35. 35. Chesnokov G.A., Topchiy M.A., Dzhevakov P.B. et al. // Dalton Trans. 2017. V. 46. № 13. P. 4331. https://doi.org/10.1039/c6dt04484k
  36. 36. Meng G., Kakalis L., Nolan S.P. et al. // Tetrahedron Lett. 2019. V. 60. № 4. P. 378. https://doi.org/10.1016/j.tetlet.2018.12.059
  37. 37. Luconi L., Gafurov Z., Rossin A. et al. // Inorg. Chim. Acta. 2018. V. 470. P. 100. https://doi.org/10.1016/j.ica.2017.03.026
  38. 38. Luconi L., Garino C., Cerreia Vioglio P. et al. // ACS Omega. 2019. V. 4. № 1. P. 1118. https://doi.org/10.1021/acsomega.8b02452
  39. 39. Luconi L., Tuci G., Gafurov Z.N. et al. // Inorg. Chim. Acta. 2020. V. 517. P. 120182. https://doi.org/10.1016/j.ica.2020.120182
  40. 40. Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Russ. J. Electrochem. 2021. V. 57. № 2. P. 134. https://doi.org/10.1134/S1023193521020075
  41. 41. Gafurov Z.N., Kagilev A.A., Kantyukov A.O. et al. // Russ. Chem. Bull. 2018. V. 67. № 3. P. 385. https://doi.org/10.1007/s11172-018-2086-7
  42. 42. Gafurov Z.N., Bekmukhamedov G.E., Kagilev A.A. et al. // J. Organomet. Chem. 2020. V. 912. P. 121163. https://doi.org/10.1016/j.jorganchem.2020.121163
  43. 43. Kagilev A.A., Gafurov Z.N., Sakhapov I.F. et al. // J. Electroanal. Chem. 2024. V. 956. P. 118084. https://doi.org/10.1016/j.jelechem.2024.118084
  44. 44. Gurina G.A., Markin A.V., Cherkasov A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 29. P. E202300392. https://doi.org/10.1002/ejic.202300392
  45. 45. Armarego W.L.F. Purification of Laboratory Chemicals. Amsterdam: Butterworth-Heinemann, 2017.
  46. 46. Long J., Lyubov D.M., Gurina G.A. et al. // Inorg. Chem. 2022. V. 61. № 3. P. 1264. https://doi.org/10.1021/acs.inorgchem.1c03429
  47. 47. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  48. 48. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  49. 49. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  50. 50. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
  51. 51. Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. № 45. P. 11623. https://doi.org/10.1021/j100096a001
  52. 52. Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007. https://doi.org/10.1063/1.456153
  53. 53. Woon D.E., Dunning T.H. // J. Chem. Phys. 1993. V. 98. № 2. P. 1358. https://doi.org/10.1063/1.464303
  54. 54. Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://doi.org/10.1063/1.3382344
  55. 55. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. № 7. P. 1456. https://doi.org/10.1002/jcc.21759
  56. 56. Casida M.E. // Recent Advances in Computational Chemistry. 1995. V. 1. Pt. 1. P. 155. https://doi.org/10.1142/9789812830586_0005
  57. 57. Adamo C., Jacquemin D. // Chem. Soc. Rev. 2013. V. 42. № 3. P. 845. https://doi.org/10.1039/c2cs35394f
  58. 58. Laurent A.D., Adamo C., Jacquemin D. // Phys. Chem. Chem. Phys. 2014. V. 16. № 28. P. 14334. https://doi.org/10.1039/c3cp55336a
  59. 59. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
  60. 60. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057. https://doi.org/10.1039/b515623h
  61. 61. Peterson K.A., Figgen D., Goll E. et al. // J. Chem. Phys. 2003. V. 119. № 21. P. 11113. https://doi.org/10.1063/1.1622924
  62. 62. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018. V. 8. № 1. P. E1327. https://doi.org/10.1002/wcms.1327
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека