ОХНМКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

ИССЛЕДОВАНИЕ ВЛИЯНИЯ УСЛОВИЙ СИНТЕЗА И КРИСТАЛЛИЗАЦИИ НА СОСТАВ И СТРОЕНИЕ СМЕШАННО-КАРБОКСИЛАТНЫХ БЕНЗОАТНО-ПЕНТАФТОРБЕНЗОАТНЫХ КОМПЛЕКСОВ ЕВРОПИЯ(III)

Код статьи
S0132344X25070012-1
DOI
10.31857/S0132344X25070012
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 52 / Номер выпуска 7
Страницы
423-437
Аннотация
В рамках работы исследовано влияние природы сольватных молекул и N-донорных лигандов на строение бензоатно-пентафторбензоатных комплексов европия. Показано, что проведение реакции взаимодействия бензоата (Bz) и пентафторбензоата (Pfb) европия с 1,10-фенатролином (Phen) в ацетонитриле с толуолом, орто-ксилолом или дихлорметаном приводит к получению соединений [Eu(Phen)(Pfb)(Bz)] · 4CHCH (I), [Eu(Phen)(Pfb)(Bz)] · 4СН(CH) (II) и [Eu(Phen)(Pfb)(Bz)] · 2,898CH2Cl2 (III) близкого строения соответственно. При использовании хинолина (Quin) удалось выделить кристаллы смешанно-карбоксилатного координационного полимера [Eu(HO)(Pfb)(Bz)] · 2(Quin) (IV). Синтезированные соединения охарактеризованы методами РСА, ИК-спектроскопии и CHN-анализа. Нековалентные взаимодействия проанализированы с использованием анализа поверхностей Хиршфельда.
Ключевые слова
смешанно-карбоксилатные комплексы европий рентгеноструктурный анализ нековалентные взаимодействия поверхность Хиршфельда
Дата публикации
05.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Singh P., Kachhap S., Singh P., Singh S.K. // Coord Chem Rev. 2022. V. 472. № 214795.
  2. 2. Marin R., Jaque D. // Chem. Rev. 2021. V. 121. № 3. P. 1425.
  3. 3. Singh A.K. // Coord Chem Rev. 2022. V. 455. № 214365.
  4. 4. Chen C., Li C., Shi Z. // Adv. Sci. 2016. V. 3. № 10. № 1600029.
  5. 5. Crawford S.E., Ohodnicki P.R., Baltrus J.P. // J. Mater. Chem. C. 2020. V. 8. P. 7975.
  6. 6. Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. Р. 4296.
  7. 7. Peng X.X., Wang M.X., Zhang J.L. // Coord Chem Rev. 2024. V. 519. P. 216096.
  8. 8. Paderni D., Giorgi L., Fus V. et al. // Coord Chem Rev. 2021. V. 429. P. 213639.
  9. 9. Li S., Zhou L., Zhang H.// Light Sci Appl. 2022. V. 11. P. 177.
  10. 10. Barkanov A., Zakharova A., Vlasova T. et al. // J. Mater. Sci. 2022. V. 57. P. 8393.
  11. 11. Ferdiana N.A., Bahti H.H., Kurnia D., Wyantuti S. // Sens. Bio-Sens. Res. 2023. V. 41. P. 100573.
  12. 12. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 830.
  13. 13. Lima N.B.D., Silva A.I.S., Gonçalves S.M.C., Simas A.M. // J. Lumin. 2016. V. 170. P. 505.
  14. 14. Melo L.L.L.S., Castro Jr. G.P., Gonçalves S.M.C. // RSC Adv. 2017. V. 7. № 34. P. 20811.
  15. 15. Melo L.L.L.S., Castro G.P., Gonçalves S.M.C. // Inorg. Chem. 2019. V. 58. № 5. P. 3265.
  16. 16. Gogoleva N.V., Shmelev M.A., Chistyakov A.S. // Mendeleev Commun. 2024. V. 34. № 4. P. 484.
  17. 17. Shmelev M. A., Gogoleva N. V., Ivanov V. K. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 539. https://doi.org/10.1134/S1070328422090056
  18. 18. Puntus L., Lyssenko K. // J. Rare Earths. 2008. V. 26. № 2. P. 146.
  19. 19. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
  20. 20. Silva A.I.S., Santos V.F.C., Lima N.B.D. et al. // RSC Adv. 2016. V. 6. P. 90934.
  21. 21. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
  22. 22. Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. Р. 678.
  23. 23. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 224. https://doi.org/10.1134/S1070328422040042
  24. 24. Zhang S., Chen A., An Y., Li Q. // Matter. 2024. V. 7. № 10. P. 3317.
  25. 25. Wang L., Deng J., Jiang M. et al // J. Mater. Chem. A. 2023. V. 11. P. 11235.
  26. 26. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. Р. 5689.
  27. 27. Larionov S.V., Glinskaya L.A., Leonova T.G. et al. // Russ. J. Coord. Chem. 2009. V. 35. P. 798. https://doi.org/10.1134/S1070328409110025
  28. 28. Khiyalov M.S., Amiraslanov I.R., Musaev F.N., Mamedov Kh.S. // Sov. J. Coord. Chem. 1982. V. 8. P. 548.
  29. 29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  30. 30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  31. 31. Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  32. 32. Thomas S.P., Spackman P.R., Jayatilaka D., Spackman M.A. // J. Chem. Theor. Comput. 2018. V. 14. P. 1614.
  33. 33. Shmelev M.A., Levina A.A., Chistyakov A.S. et al. // Mendeleev Commun. 2025. V. 35. № 1. P. 35.
  34. 34. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. № 8. P. 1544.
  35. 35. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemistrySelect. 2020. V. 5. № 28. P. 8475.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека