- PII
- S3034549925010011-1
- DOI
- 10.7868/S3034549925010011
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 1
- Pages
- 3-11
- Abstract
- The nickel(II) complex Ni(L)Py (I) (L is 1,3-bis(3,5-di-tert-butyl-2-phenolato)-5,5-dimethyl-(4,6-dihydropyrimidin-2-ylidene)) containing the dianionic bonded N-heterocyclic carbene (NHC) bis(phenolate) ligand is synthesized. In the presence of a stronger base (4-dimethylaminopyridine (DMAP)), the exchange reaction occurs with the replacement of pyridine in complex I by the DMAP molecule to form complex Ni(L)(DMAP) (II), the crystal structure of which is determined by XRD. The synthesized compounds are characterized by elemental analysis, mass spectrometry, and NMR spectroscopy. The spectral characteristics of the compounds are studied.
- Keywords
- комплексы никеля (II) N-гетероциклические карбеновые лиганды пинцерные лиганды
- Date of publication
- 17.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 31
References
- 1. Lapshin I.V., Cherkasov A.V., Lyssenko K.A. et al. // Inorg. Chem. 2022. V. 61. № 24. P. 9147. https://doi.org/10.1021/acs.inorgchem.2c00698
- 2. Borré E., Dahm G., Aliprandi A. et al. // Organometallics. 2014. V. 33. № 17. P. 4374. https://doi.org/10.1021/om5003446
- 3. Fosu E., Le N., Abdulraheem T. et al. // Organometallics 2024. V. 43. № 4. P. 467. https://doi.org/10.1021/acs.organomet.3c00411
- 4. Sheng H., Liu Q., Su X.-D. et al. // Org. Lett. 2020. V. 22. № 18. P. 7187. https://doi.org/10.1021/acs.orglett.0c02523
- 5. Li J., Wang L., Zhao Z. et al. // Angew. Chemie Int. Ed. 2020. V. 59. № 21. P. 8210. https://doi.org/10.1002/anie.201916379
- 6. Rao J., Dong S., Yang C. et al. // J. Am. Chem. Soc. 2023. V. 145. № 47. P. 25766. https://doi.org/10.1021/jacs.3c09280
- 7. Karaaslan M.G., Aktaş A., Gürses C. et al. // Bioorg. Chem. 2020. V. 95. P. 103552. https://doi.org/10.1016/j.bioorg.2019.103552
- 8. Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Russ. Chem. Bull. 2017. V. 66. № 9. P. 1529. https://doi.org/10.1007/s11172-017-1920-7
- 9. Zhao Q., Meng G., Nolan S.P. et al. // Chem. Rev. 2020. V. 120. № 4. P. 1981. https://doi.org/10.1021/acs.chemrev.9b00634
- 10. Sau S.C., Hota P.K., Mandal S.K. et al. // Chem. Soc. Rev. 2020. V. 49. № 4. P. 1233. https://doi.org/10.1039/c9cs00866g
- 11. Zhao Q., Han B., Peng C. et al. // Med. Res. Rev. 2024. https://doi.org/10.1002/med.22039
- 12. Bellotti P., Koy M., Hopkinson M.N. et al. // Nat. Rev. Chem. 2021. V. 5. № 10. P. 711. https://doi.org/10.1038/s41570-021-00321-1
- 13. Ibáñez S., Poyatos M., Peris E. // Acc. Chem. Res. 2020. V. 53. № 7. P. 1401. https://doi.org/10.1021/acs.accounts.0c00312
- 14. Ott I. // Adv. Inorg. Chem. 2020. V. 75. P. 121. https://doi.org/10.1016/bs.adioch.2019.10.008
- 15. Liang Q., Song D. // Chem. Soc. Rev. 2020. V. 49. № 4. P. 1209. https://doi.org/10.1039/c9cs00508k
- 16. Strausser S.L., Jenkins D.M. // Organometallics. 2021. V. 40. № 11. P. 1706. https://doi.org/10.1021/acs.organomet.1c00189
- 17. Kashina M.V., Luzyanin K.V., Katlenok E.A. et al. // Dalton Trans. 2022. V. 51. № 17. P. 6718. https://doi.org/10.1039/d2dt00252c
- 18. Zhan L., Zhu M., Liu L. et al. // Inorg. Chem. 2021. V. 60. № 21. P. 16035. https://doi.org/10.1021/acs.inorgchem.1c01964
- 19. Bernd M.A., Bauer E.B., Oberkofler J. et al. // Dalton Trans. 2020. V. 49. № 40. P. 14106. https://doi.org/10.1039/d0dt02598d
- 20. Sánchez A., Sanz-Garrido J., Carrasco C.J. et al. // Inorg. Chim. Acta. 2022. V. 537. P. 120946. https://doi.org/10.1016/j.ica.2022.120946
- 21. Li M., Liska T., Swetz A. et al. // Organometallics. 2020. V. 39. № 10. P. 1667. https://doi.org/10.1021/acs.organomet.0c00065
- 22. Rendón-Nava D., Angeles-Beltrán D., Rheingold A.L. et al. // Organometallics. 2021. V. 40. № 13. P. 2166. https://doi.org/10.1021/acs.organomet.1c00324
- 23. Rivera C., Bacilio-Beltrán H.A., Puebla-Pérez A.M. et al. // New J. Chem. 2022. V. 46. № 29. P. 14221. https://doi.org/10.1039/d2nj02508f
- 24. Neshat A., Mastrorilli P., Mobarakeh A.M. // Molecules. 2022. V. 27. № 1. P. 95. https://doi.org/10.3390/molecules27010095
- 25. Díez-González S., Marion N., Nolan S.P. // Chem. Rev. 2009. V. 109. № 8. P. 3612. https://doi.org/10.1021/cr900074m
- 26. Pearson R.G. // Inorg. Chem. 1973. V. 12. № 3. P. 712. https://doi.org/10.1021/ic50121a052
- 27. Pearson R.G. // Inorg. Chem. 1988. V. 27. № 4. P. 734. https://doi.org/10.1021/ic00277a030
- 28. Gunanathan C., Milstein D. // Chem. Rev. 2014. V. 114. № 24. P. 12024. https://doi.org/10.1021/cr5002782
- 29. Maser L., Vondung L., Langer R. // Polyhedron. 2018. V. 143. P. 28. https://doi.org/10.1016/j.poly.2017.09.009
- 30. Taakili R., Canac Y. // Molecules. 2020. V. 25. № 9. P. 2231. https://doi.org/10.3390/molecules25092231
- 31. Gandara C., Philouze C., Jarjayes O. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 561. https://doi.org/10.1016/j.ica.2018.06.046
- 32. Nolan S.P. // N-Heterocyclic Carbenes Eff. Tools Organomet. Synth. 2014. V. 9783527334. P. 1. https://doi.org/10.1002/9783527671229
- 33. Dröge T., Glorius F. // Angew. Chem. Int. Ed. 2010. V. 49. № 39. P. 6940. https://doi.org/10.1002/anie.201001865
- 34. Wittwer B., Leitner D., Neururer F.R. et al. // Polyhedron. 2024. V. 250. P. 116786. https://doi.org/10.1016/j.poly.2023.116786
- 35. Chesnokov G.A., Topchiy M.A., Dzhevakov P.B. et al. // Dalton Trans. 2017. V. 46. № 13. P. 4331. https://doi.org/10.1039/c6dt04484k
- 36. Meng G., Kakalis L., Nolan S.P. et al. // Tetrahedron Lett. 2019. V. 60. № 4. P. 378. https://doi.org/10.1016/j.tetlet.2018.12.059
- 37. Luconi L., Gafurov Z., Rossin A. et al. // Inorg. Chim. Acta. 2018. V. 470. P. 100. https://doi.org/10.1016/j.ica.2017.03.026
- 38. Luconi L., Garino C., Cerreia Vioglio P. et al. // ACS Omega. 2019. V. 4. № 1. P. 1118. https://doi.org/10.1021/acsomega.8b02452
- 39. Luconi L., Tuci G., Gafurov Z.N. et al. // Inorg. Chim. Acta. 2020. V. 517. P. 120182. https://doi.org/10.1016/j.ica.2020.120182
- 40. Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Russ. J. Electrochem. 2021. V. 57. № 2. P. 134. https://doi.org/10.1134/S1023193521020075
- 41. Gafurov Z.N., Kagilev A.A., Kantyukov A.O. et al. // Russ. Chem. Bull. 2018. V. 67. № 3. P. 385. https://doi.org/10.1007/s11172-018-2086-7
- 42. Gafurov Z.N., Bekmukhamedov G.E., Kagilev A.A. et al. // J. Organomet. Chem. 2020. V. 912. P. 121163. https://doi.org/10.1016/j.jorganchem.2020.121163
- 43. Kagilev A.A., Gafurov Z.N., Sakhapov I.F. et al. // J. Electroanal. Chem. 2024. V. 956. P. 118084. https://doi.org/10.1016/j.jelechem.2024.118084
- 44. Gurina G.A., Markin A.V., Cherkasov A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 29. P. E202300392. https://doi.org/10.1002/ejic.202300392
- 45. Armarego W.L.F. Purification of Laboratory Chemicals. Amsterdam: Butterworth-Heinemann, 2017.
- 46. Long J., Lyubov D.M., Gurina G.A. et al. // Inorg. Chem. 2022. V. 61. № 3. P. 1264. https://doi.org/10.1021/acs.inorgchem.1c03429
- 47. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- 48. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 49. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- 50. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
- 51. Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. № 45. P. 11623. https://doi.org/10.1021/j100096a001
- 52. Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007. https://doi.org/10.1063/1.456153
- 53. Woon D.E., Dunning T.H. // J. Chem. Phys. 1993. V. 98. № 2. P. 1358. https://doi.org/10.1063/1.464303
- 54. Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://doi.org/10.1063/1.3382344
- 55. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. № 7. P. 1456. https://doi.org/10.1002/jcc.21759
- 56. Casida M.E. // Recent Advances in Computational Chemistry. 1995. V. 1. Pt. 1. P. 155. https://doi.org/10.1142/9789812830586_0005
- 57. Adamo C., Jacquemin D. // Chem. Soc. Rev. 2013. V. 42. № 3. P. 845. https://doi.org/10.1039/c2cs35394f
- 58. Laurent A.D., Adamo C., Jacquemin D. // Phys. Chem. Chem. Phys. 2014. V. 16. № 28. P. 14334. https://doi.org/10.1039/c3cp55336a
- 59. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
- 60. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057. https://doi.org/10.1039/b515623h
- 61. Peterson K.A., Figgen D., Goll E. et al. // J. Chem. Phys. 2003. V. 119. № 21. P. 11113. https://doi.org/10.1063/1.1622924
- 62. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018. V. 8. № 1. P. E1327. https://doi.org/10.1002/wcms.1327