RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Synthesis of a New Cobalt Complex with Catechol Dianion and Study of the Kinetics of its Redox-Activated Dissociation

PII
S3034549925010076-1
DOI
10.7868/S3034549925010076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
60-71
Abstract
A new redox-active cobalt(III) complex with a catechol dianion and two 4,4’-dimethoxy-2,2’-bipyridine ligands was synthesized. The reduction of the complex with ascorbic acid in an inert atmosphere was studied by NMR spectroscopy in situ. The reaction followed the first-order kinetics with respect to the starting complex, had a rate constant of 1.1 × 10−3 s−1, and was accompanied by the release of catechol, which served as a model drug.
Keywords
in situ спектроскопия ядерного магнитного резонанса пирокатехин комплексы кобальта редокс-активируемая доставка лекарственных препаратов
Date of publication
17.01.2025
Year of publication
2025
Number of purchasers
0
Views
61

References

  1. 1. Vaupel P., Schlenger K., Knoop C. et al. // Cancer Research. 1991. V. 51. P. 3316.
  2. 2. Brown J.M., Wilson W.R. // Nature Reviews Cancer. 2004. V. 4. P. 437.
  3. 3. Denny W.A. // Cancer Invest. 2004. V. 22. P. 604.
  4. 4. Kratz F., Müller I.A., Ryppa C. et al. // ChemMed-Chem. 2008. V. 3. P. 20.
  5. 5. Renfrew A.K. // Metallomics. 2014. V. 6. P. 1324.
  6. 6. Hall M.D., Failes T.W., Yamamoto N. et al. // Dalton Trans. 2007. P. 3983.
  7. 7. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  8. 8. Tsitovich P.B., Spernyak J.A., Morrow J.R. // Angew. Chem. Int. Ed. 2013. V. 52. P. 13997.
  9. 9. Teicher B.A., Abrams M.J., Rosbe K.W. et al. // Cancer Res. 1990. V. 50. P. 6971.
  10. 10. Ware D.C., Denny W.A., Clark G.R. // Acta Crystallogr. C. 1997. V. 53. P. 1058.
  11. 11. Failes T.W., Hambley T.W. // Dalton Trans. 2006. V. 1895.
  12. 12. Ahn G-One, Botting K.J., Patterson A.V. et al. // Biochem. Pharmacol. 2006. V. 71. P. 1683.
  13. 13. Chang J.Y-C., Stevenson R.J., Lu G.-L. et al. // Dalton Trans. 2010. V. 39. P. 11535.
  14. 14. Karnthaler-Benbakka C., Groza D., Kryeziu K. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 12930.
  15. 15. McPherson J.N., Hogue R.W., Akogun F.S. et al. // Inorg. Chem. 2019. V. 58. P. 2218.
  16. 16. Хакина Е.А., Никовский И.А., Бабакина Д.А. и др. // Коорд. химия. 2023. Т. 49. С. 27
  17. 17. Khakina E.A., Nikovskii I.A., Babakina D.A. et al. // Russ. J Coord Chem 2023. V. 49, № 1. P. 24. https://doi.org/10.1134/S1070328422700105.
  18. 18. Nikovskii I.A., Spiridonov K.A., Dan’shina А.А. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 195. https://doi.org/10.1134/S1070328423600699
  19. 19. Spiridonov K.A., Nikovskii I.A., Antoshkina E.P. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 163. https://doi.org/10.1134/S1070328423600663
  20. 20. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  21. 21. Ma D.-L., Wu‘C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.
  22. 22. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  23. 23. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  24. 24. Stamatatos T.C., Bell A., Cooper P. et.al. // Inorg. Chem. Commun. 2005. V. 8. P. 533.
  25. 25. Alvarez S. // Chem. Rev. 2015. V. 115 P. 13447.
  26. 26. Reddy O.S., Subha M.C.S., Jithendra T. et al. // Int. J. App. Pharm. 2019. V. 11. P. 71.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library