RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Design of an Unsymmetrical PCN Nickel(II) Pincer Complex Based on 2,3,4,5-Tetraphenyl-1-Monophosphole

PII
S3034549925080024-1
DOI
10.7868/S3034549925080024
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 8
Pages
501-509
Abstract
A new unsymmetrical PCN pincer ligand, -ethyl--(3-((2,3,4,5-tetraphenyl-1-phosphol-1-yl))methyl) benzylpethanamine, combining different donors (amine and phosphole groups), has been synthesized. The ligand was obtained in four steps with a good overall yield (49%), using commercially available reagents as starting materials. Based on the obtained ligand, a design of an unsymmetrical nickel(II) pincer complex was proposed. Quantum-chemical calculations of the molecular structure of the complex show the formation of weak Ni–P bonds and the manifestation of a weak -influence of the phosphole group with respect to the amine group, which distinguishes this complex from its analogs, PCN complexes based on dialkylphosphines.
Keywords
комплексы никеля(II) пинцерные лиганды фосфолы
Date of publication
15.08.2025
Year of publication
2025
Number of purchasers
0
Views
33

References

  1. 1. Dongbang S. // Organometallics 2024. V. 43. № 16. P. 1662. https://doi.org/10.1021/acs.organomet.3c00537
  2. 2. Kitos A.A., Mavragani N., Murugesu M. et al. // Mater. Adv. 2020. V. 1. № 8. P. 2688. https://doi.org/10.1039/d0ma00720j
  3. 3. Komuro T., Nakajima Y., Takaya J. et al. // Coord. Chem. Rev. 2022. V. 473. P. 214837. https://doi.org/10.1016/j.ccr.2022.214837
  4. 4. Denny J.A., Lang G.M., Autry S. et al. // J. Organomet. Chem. 2025. V. 1023. P. 123419. https://doi.org/10.1016/j.jorganchem.2024.123419
  5. 5. Li H., Zhang B., Feng R. et al. // Dalton Trans. 2024. V. 53. № 27. P. 11470. https://doi.org/10.1039/d4dt00980k
  6. 6. Esteruelas M.A., Moreno-Blázquez S., Oliván M. et al. // Inorg. Chem. 2023. V. 62. № 26. P. 10152. https://doi.org/10.1021/acs.inorgehem.3c00694
  7. 7. Pranesh Kavin S., Ramesh R. // Dalton Trans. 2023. V. 52. № 29. P. 10038. https://doi.org/10.1039/d3dt01628e
  8. 8. Kasera A., Biswas J.P., Ali Alshehri A. et al. // Coord. Chem. Rev. 2023. V. 475. P. 214915. https://doi.org/10.1016/j.ccr.2022.214915
  9. 9. Гафуров З.Н., Михайлов И.К., Кагилев А.А. и др. // Коорд. химия. 2024. Т. 50. № 10. С. 769 (Gafurov Z.N., Mikhailov I.K., Kagilev A.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 10. P. 769). https://doi.org/10.1134/S1070328424601092
  10. 10. Гафуров З.Н., Михайлов И.К., Кагилев А.А. и др. // Изв. АН. Сер. хим. 2024. Т. 73. № 11. С. 3259 (Gafurov Z.N., Mikhailov I.K., Kagilev A.A. et al. // Russ. Chem. Bull. 2024. V. 73. № 11. P. 3259). https://doi.org/10.1007/s11172-024-4441-1
  11. 11. Roque-Ramires M.A., Restrepo-Acevedo A.C., Cuent-Cabezas F. et al. // Appl. Organomet. Chem. 2024. V. 38. № 11. https://doi.org/10.1002/aoc.7648
  12. 12. Sekar F.K., Rengan R., Sundarraman B. // J. Org. Chem. 2024. V. 89. № 16. P. 11161. https://doi.org/10.1021/acs.joc.4c00621
  13. 13. Zhu S., Wu W., Hong D. et al. // Inorg. Chem. 2024. V. 63. № 32. P. 14860. https://doi.org/10.1021/acs.inorgehem.4c00981
  14. 14. Biswas N., Gelman D. // ACS Catal. 2024. V. 14. № 3. P. 1629. https://doi.org/10.1021/acscatal.3c05062
  15. 15. Tomsu G., Stöger B., Kirchner K. // Monatsh. Chem. 2024. V. 155. № 2. P. 173. https://doi.org/10.1007/s00706-024-03171-x
  16. 16. Schratzberger H., Himmelbauer D., Eder W. et al. // Monatsh. Chem. 2023. V. 154. № 11. P. 1253. https://doi.org/10.1007/s00706-023-03123-x
  17. 17. Tomsu G., Stöger B., Kirchner K. // Organometallics. 2023. V. 42. № 20. P. 2999. https://doi.org/10.1021/acs.organomet.3c00327
  18. 18. Schratzberger H., Liebminger L.A., Stöger B. et al. // Dalton Trans. 2023. V. 52. № 35. P. 12410. https://doi.org/10.1039/d3dt021116
  19. 19. Pelczar E.M., Emge T.J., Krogh-Jespersen K. et al. // Organometallics. 2008. V. 27. № 22. P. 5759. https://doi.org/10.1021/cm800425p
  20. 20. Lee B., Pabst T.P., Hierhmeier G. et al. // Organometallics. 2023. V. 42. № 8. P. 708. https://doi.org/10.1021/acs.organomet.3c00079
  21. 21. Pandey B., Krause J.A., Guan H. // Inorg. Chem. 2023. V. 62. № 2. P. 967. https://doi.org/10.1021/acs.inorgehem.2c03803
  22. 22. Rosca D.A., Regentauer N.I., Wadepohl H. // Inorg. Chem. 2022. V. 61. № 19. P. 7426. https://doi.org/10.1021/ACS.INORGCHEM.2C00459
  23. 23. Stadler B., Meng H.H.Y., Belazregue S. et al. // Organometallics. 2023. V. 42. № 12. P. 1278. https://doi.org/10.1021/acs.organomet.2c00662
  24. 24. Cruz-Navarro J.A., Sánchez-Mora A., Serrano-García J.S. et al. // Catalysts. 2024. V. 14. № 1. P. 69. https://doi.org/10.3390/catal1401069
  25. 25. Singh V., Jain H., Naih S. et al. // Chem. Eur. J. 2024. V. 30. № 9. E202303189. https://doi.org/10.1002/chem.202303189
  26. 26. González-Sebastian L., Reyes-Sanchez A., Morales-Morales D. // Organometallics. 2023. V. 42. № 18. P. 2426. https://doi.org/10.1021/acs.organomet.3c00261
  27. 27. Panicker R.R., Vijai Anand A.S., Boominathan T. et al. // Inorg. Chim. Acta. 2024. V. 571. P. 122210. https://doi.org/10.1016/j.ica.2024.122210
  28. 28. Jakhar V.K., Shen Y.H., Hyun S.M. et al. // Organometallics. 2023. V. 42. № 12. P. 1339. https://doi.org/10.1021/acs.organomet.3c00060
  29. 29. Dinda S., Bhola T., Pant S. et al. // J. Catal. 2024. V. 439. P. 115766. https://doi.org/10.1016/j.jcat.2024.115766
  30. 30. Goswami B., Khaitaa M., Samanta S. // Dalton Trans. 2022. V. 51. № 4. P. 1454. https://doi.org/10.1039/d1dt026224
  31. 31. Ge L., Li T., Duan Y. et al. // Appl. Organomet. Chem. 2024. V. 39. № 2. https://doi.org/10.1002/aoc.7825
  32. 32. Schratzberger H., Kirchner K. // ChemCatChem. 2024. V. 17. № 2. https://doi.org/10.1002/cctc.202401398
  33. 33. Dong Y., Zhang M., Li X. et al. // Appl. Organomet. Chem. 2024. V. 39. № 1. https://doi.org/10.1002/aoc.7790
  34. 34. Kumar A., Gupta R., Mani G. // Organometallics. 2023. V. 42. № 8. P. 732. https://doi.org/10.1021/acs.organomet.3c00106
  35. 35. Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Molecules. 2021. V. 26. № 13. P. 4063. https://doi.org/10.3390/molecules26134063
  36. 36. Bailey W.D., Luconi L., Rossin A. et al. // Organometallics. 2015. V. 34. № 16. P. 3998. https://doi.org/10.1021/acs.organomet.5b00355
  37. 37. Mousa A.H., Bendix J., Wendt O.F. // Organometallics. 2018. V. 37. № 15. P. 2581. https://doi.org/10.1021/acs.organomet.8b00333
  38. 38. Moulton C.J., Shaw B.L. // Dalton Trans. 1976. V. 0. № 11. P. 1020. https://doi.org/10.1039/DT9760001020
  39. 39. Boro B.J., Dickie D.A., Goldberg K.I. et al. // Acta Crystallogr. E. 2008. V. 64. № 10. P. M1304. https://doi.org/10.1107/S1600536808029814
  40. 40. Spasyuk D.M., Zargarian D., Van Der Est A. // Organometallics. 2009. V. 28. № 22. P. 6531. https://doi.org/10.1021/om900751f
  41. 41. Pandarus V., Zargarian D. // Organometallics. 2007. V. 26. № 17. P. 4321. https://doi.org/10.1021/om700400x
  42. 42. Luconi L., Gafurov Z., Rossin A. et al. // Inorg. Chim. Acta. 2018. V. 470. P. 100. https://doi.org/10.1016/j.ica.2017.03.026
  43. 43. Luconi L., Garino C., Cerreia Vioglio P. et al. // ACS Omega. 2019. V. 4. № 1. P. 1118. https://doi.org/10.1021/acsomega.8b02452
  44. 44. Luconi L., Tuci G., Gafurov Z.N. et al. // Inorg. Chim. Acta. 2020. V. 517. P. 120182. https://doi.org/10.1016/j.ica.2020.120182
  45. 45. Gafurov Z.N., Bekmukhamedov G.E., Kagilev A.A. et al. // J. Organomet. Chem. 2020. V. 912. P. 121163. https://doi.org/10.1016/j.jorganchem.2020.121163
  46. 46. Gafurov Z.N., Zueva E.M., Bekmukhamedov G.E. et al. // J. Organomet. Chem. 2021. V. 949. P. 121951. https://doi.org/10.1016/j.jorganchem.2021.121951
  47. 47. Mikhailov I.K., Gafurov Z.N., Kagilev A.A. et al. // Catalysts. 2023. V. 13. № 9. P. 1291. https://doi.org/10.3390/catal13091291
  48. 48. Mikhailov I.K., Gafurov Z.N., Kagilev A.A. et al. // Appl. Magn. Reson. 2024. V. 55. № 10. P. 1323. https://doi.org/10.1007/s00723-024-01710-7
  49. 49. Kagilev A.A., Gafurov Z.N., Sakhapov I.F. et al. // J. Electroanal. Chem. 2024. V. 956. P. 118084. https://doi.org/10.1016/j.jelechem.2024.118084
  50. 50. Kagilev A.A., Gafurov Z.N., Kantyukov A.O. et al. // J. Solid State Electrochem. 2024. V. 28. № 3–4. P. 897. https://doi.org/10.1007/s10008-023-05765-7
  51. 51. Gafurov Z.N., Mikhailov I.K., Kagilev A.A. et al. // Inorg. Chim. Acta. 2025. V. 578. P. 122522. https://doi.org/10.1016/j.ica.2024.122522
  52. 52. Holah D.G., Hughes A.N., Hui B.C. et al. // J. Heterocycl. Chem. 1978. V. 15. № 1. P. 89. https://doi.org/10.1002/jhet.557015019
  53. 53. Zagidullin A.A., Bezkishko I.A., Miluykov V.A. et al. // Mendeleev Commun. 2013. V. 23. № 3. P. 117. https://doi.org/10.1016/j.mencom.2013.05.001
  54. 54. Armarego W.L.F. Purification of Laboratory Chemicals. 8th Ed. Amsterdam: Butterworth-Heinemann, 2017.
  55. 55. Zagidullin A., Grigoreva E., Burganov T. et al. // Inorg. Chem. Commun. 2021. V. 134. P. 108949. https://doi.org/10.1016/j.inoche.2021.108949
  56. 56. Stavrakov G., Philipova I., Lukarski A. et al. // Molecules. 2020. V. 25. № 15. P. 3341. https://doi.org/10.3390/molecules25153341
  57. 57. Poverenov E., Gandelman M., Shimon L.J.W. et al. // Organometallics. 2005. V. 24. № 6. P. 1082. https://doi.org/10.1021/om049182m
  58. 58. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
  59. 59. Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. № 45. P. 11623. https://doi.org/10.1021/j100096a001
  60. 60. Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007. https://doi.org/10.1063/1.456153
  61. 61. Woon D.E., Dunning T.H. // J. Chem. Phys. 1993. V. 98. № 2. P. 1358. https://doi.org/10.1063/1.464303
  62. 62. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018. V. 8. № 1. P. E1327. https://doi.org/10.1002/wcms.1327
  63. 63. Fleckhaus A., Mousa A.H., Lawal N.S. et al. // Organometallics. 2015. V. 34. № 9. P. 1627. https://doi.org/10.1021/om501231k
  64. 64. Schoeder C.T., Meyer A., Mahardhika A.B. et al. // ACS Omega. 2019. V. 4. № 2. P. 4276. https://doi.org/10.1021/acsomega.8b03695
  65. 65. Xi H.T., Zhao T., Sun X.Q. et al. // RSC Adv. 2013. V. 3. № 3. P. 691. https://doi.org/10.1039/c2ra22802e
  66. 66. Oshelepkova E., Zagidullin A., Burganov T. et al. // Dalton Trans. 2018. V. 47. № 33. P. 11521. https://doi.org/10.1039/c8dt02208a
  67. 67. Melaimi M., Thoumazet C., Ricard L. et al. // J. Organomet. Chem. 2004. V. 689. № 19. P. 2988. https://doi.org/10.1016/j.jorganchem.2004.06.035
  68. 68. Budnikova Y.H., Perichon J., Yakhvarov D.G. et al. // J. Organomet. Chem. 2001. V. 630. № 2. P. 185. https://doi.org/10.1016/S0022-328X (01)00813-0
  69. 69. Kumar S., Kumar S., Maity J. et al. // New J. Chem. 2021. V. 45. № 36. P. 16635. https://doi.org/10.1039/d1nj02423j
  70. 70. Zagidullin A.A., Lakomkin A.R., Gerasimova T.P. et al. // J. Organomet. Chem. 2024. V. 1013. P. 123163. https://doi.org/10.1016/j.jorganchem.2024.123163
  71. 71. Гафуров З.Н., Кагилев А.А., Кантюков А.О. и др. // Изв. АН. Сер. хим. 2018. Т. 67. № 3. С. 385 (Gafurov Z.N., Kagilev A.A., Kantyukov A.O. et al. // Russ. Chem. Bull. 2018. V. 67. № 3. P. 385). https://doi.org/10.1007/s11172-018-2086-7
  72. 72. Doherty S., Robins E.G., Knight J.G. et al. // J. Organomet. Chem. 2001. V. 640. № 1–2. P. 182. https://doi.org/10.1016/S0022-328X (01)01180-9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library