RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Synthesis and Crystal Structure of Cobalt Complexes with Cucurbit[6]uril

PII
S3034549925100029-1
DOI
10.7868/S3034549925100029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 10
Pages
611-620
Abstract
Four cobalt complexes with cucurbit[6]uril (CB[6]), [Co(HO)](Bdc) · CB[6] · 14.5HO (I), 2(HNMe)[CoCl] · CB[6] ·12HO (II), [[Co(HO)Cl](CB[6])]Cl · 9HO (III) and [Co(HO)][Co(HO)(Dm)][CoCl] · CB[6] · 6HO (IV), were prepared by evaporation of the reaction solution containing cobalt chloride and cucurbit[6]uril (CB[6]). According to X-ray diffraction data, compound I is formed by packing of cationic cobalt aqua complexes, terephthalate anions, and CB[6] molecules linked together by hydrogen bonds with crystallization water molecules into a supramolecular cage. The structure of compound II represents a packing of CB[6] molecules, dimethylammonium cations, and anionic cobalt chloro complexes. Compound III contains tetranuclear cationic cobalt chloro aqua complexes with CB[6], with chloride anions acting as counter-ions. The crystal structure of IV is a packing of cationic cobalt aqua complexes, anionic cobalt chloro complexes, and CB[6] molecules linked by hydrogen bonds with crystallization water molecules into a supramolecular cage. The resulting compounds are characterized by IR spectra and elemental analysis data.
Keywords
комплексы кобальта рентгеноструктурный анализ кукурбит[6]урил кристаллическая структура
Date of publication
22.05.2025
Year of publication
2025
Number of purchasers
0
Views
49

References

  1. 1. Demakov P.A., Kovalenko K.A., Lavrov A.N. et al. // Inorganics. 2023. V. 11. № 6. P. 259. https://doi.org/10.3390/inorganics11060259
  2. 2. Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. // Nanomaterials. 2023. V. 13. P. 2773. https://doi.org/10.3390/nano13202773
  3. 3. Павлов Д.Н., Лавров А.Н., Самсоненко Д.Г. и др. // Коорд. химия. 2024. Т. 50. № 9. С. 577 https://doi.org/10.1134/S1070328424600475
  4. 4. Ishii N., Okamura Y., Chiba S. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 24. https://doi.org/10.1021/ja077666e
  5. 5. Wang X.L., Bao X., Wei Y.J. et al. // Z. Anorg. Allg. Chem. 2015. V. 641. P. 573. https://doi.org/10.1002/zaac.201400429
  6. 6. Xu Y.H., Qu X.N., Song H.B. et al. // Polyhedron. 2007. V. 26. P. 741. https://doi.org/10.1016/j.poly.2006.08.036
  7. 7. Zhang C.X., Zhang Y.Y., Sun Y.Q. // Polyhedron. 2010. V. 29. P. 1387. https://doi.org/10.1016/j.poly.2009.12.039
  8. 8. Ghosh S., Kamilya S., Das M. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 7067. https://doi.org/10.1021/acs.inorgchem.0000538
  9. 9. Song D., Li B., Li X. et al. // ChemSusChem. 2020. V. 13. P. 394. https://doi.org/10.1002/cssc.201902668
  10. 10. Kovalenko E.A., Mit’kina T.V., Geras’ko O.A. et al. // Russ. Coord. Chem. 2011. V. 37. P. 163 https://doi.org/10.1134/S1070328411020023
  11. 11. Mitkina T.V., Sokolov M.N., Naumov D.Y. et al. // Inorg. Chem. 2006. V. 45. P. 6950. https://doi.org/10.1021/ic060502z
  12. 12. Yi S., Captain B., Ottaviani M.F. et al. // Langmuir. 2011. V. 27. № 9. P. 5624. https://doi.org/10.1021/ia2005198
  13. 13. Zheng J., Meng Y., Zhang L. et al. // Inorg. Chim. Acta. 2022. V. 529. P. 120669. https://doi.org/10.1016/j.ica.2021.120669
  14. 14. Zheng J., Ma Y., Yanga X. et al. // RSC Adv. 2022. V. 12. P. 18736. https://doi.org/10.1021/10.1039/d2ra024594
  15. 15. Limel Z., Jiannan Z., Yanqian Z. et al. // Supramol. Chem. 2008. V. 20. № 8. P. 709. https://doi.org/10.1080/10610270701747602
  16. 16. Shuai X., Kai-Wen C., Ming-Hui Z. et al. // Chin. J. Inorg. Chem. 2023. V. 39. P. 585. https://doi.org/10.11862/CJIC.2023.037
  17. 17. Liang Z.-Y., Chen H.-Y., Shan C.-Y. et al. // Polyhedron. 2016. V. 110. P. 125. http://dx.doi.org/10.1016/j.poly.2016.02.029
  18. 18. Min W., Ren Q., Yuan X.-Y. et al. // J. Mol. Struc. 2023. V. 1294. P. 136429. https://doi.org/10.1016/j.molstruc.2023.136429
  19. 19. Liang L.-L., Zhao Y., Chen K. et al. // Polymers. 2013. V. 5. P. 418. https://doi.org/10.3390/polym5020418
  20. 20. Wang Z.-B., Zhao M., Li Y.-Z. et al. // Supramol. Chem. 2008. V. 20. № 8. P. 689. https://doi.org/10.1080/10610270701732877
  21. 21. Андриенко И.В., Коваленко Е.А., Кардамонова Н.Е. и др. // Коорд. химия. 2019. Т. 45. № 6. С. 372 https://doi.org/10.1134/S1070328419060010
  22. 22. Day A., Arnold A.P., Blanch R.J. et al. // J. Org. Chem., 2001. V. 66. P. 8094. https://doi.org/10.1021/jo015897c
  23. 23. Bruker Apex3 Software Suite: Apex3, SAD-ABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
  24. 24. CrysAlisPro Software system, version 1.171.42.89a. Rigaku Oxford Diffraction, Rigaku Corporation, Wroclaw, Poland, 2023.
  25. 25. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S205327331402637
  26. 26. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  27. 27. Hübschle C.B., Sheldrick G.M., Dürrich B. // J. Appl. Cryst. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
  28. 28. Spek A.L. // Acta Crystallogr. 2015. V. 71. № 1. P. 9. https://doi.org/10.1107/S2053229614024929
  29. 29. Kovalenko E.A., Samsonenko D.G., Naumov D.Yu. et al. // J. Struc. Chem. 2014. V. 55. S274. https://doi.org/10.1134/S0022476614080113
  30. 30. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Pt B. Wiley, 2009. 416 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library