ОХНМКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

КОМПЛЕКСЫ ПИВАЛОИЛТРИФТОРАЦЕТОНАТОВ КАЛИЯ И РУБИДИЯ С ЭФИРОМ 18-КРАУН-6: СИНТЕЗ, СТРОЕНИЕ, ТЕРМИЧЕСКИЕ СВОЙСТВА

Код статьи
S3034549925100039-1
DOI
10.7868/S3034549925100039
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 10
Страницы
621-633
Аннотация
В рамках поиска летучих фторированных соединений калия и рубидия, синтезированы новые комплексы соответствующих пивалоилтрифторацетонатов (Ptac) с эфиром 18-краун-6 — [K(18C6)-(Ptac)] (I) и [Rb(18C6)(Ptac)] (II). Соединения охарактеризованы методами элементного анализа, ИК-спектроскопии и РФА, их строение изучено с помощью РСА в диапазоне 100–400 K (CCDC № 2429226—2429232 (I), 2429233—2429239 (II)). Комплексы изоструктурны и имеют островное моноядерное строение, а между фрагментами можно отметить контакты М...Н и М...С с 'Bu–группой, образующие цепочки. Тензоры термического расширения вытянуты вдоль этого направления. С помощью РСА показано, что катион рубидия в таком комплексе может дополнять координационную сферу за счет молекулы растворителя (хлороформ, CCDC № 2429240 (IIs)). Для I, II и IIs изучены поверхности Хиршфельда и проведен поиск псевдопериодичности в кристаллических упаковках методом трансляционных подрешеток. С помощью термотравиметрического анализа показано, что комплексы I и II, в отличие от исходных пивалоилтрифторацетонатов, являются летучими и перспективны для тестирования в газофазных процессах осаждения пленочных материалов.
Ключевые слова
летучие комплексы щелочные металлы β-дикетонаты краун-эфиры рентгеноструктурный анализ термотравиметрия
Дата публикации
05.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
48

Библиография

  1. 1. Devi A. // Coord. Chem. Rev. 2013. V. 257. № 23–24. P. 3332. https://doi.org/10.1016/j.ccr.2013.07.025
  2. 2. Emslie D.J., Chadha P., Price J.S. // Coord. Chem. Rev. 2013. V. 257. № 23–24. P. 3282. https://doi.org/10.1016/j.ccr.2013.07.010
  3. 3. Johnson R.W., Hulqvist A., Bent S.F. // Mater. Today. 2014. V. 17. № 5. P. 236. https://doi.org/10.1016/j.mattod.2014.04.026
  4. 4. Romanov M.V., Korsakov I.E., Kaul A.R. et al. // Chem. Vap. Depos. 2004. V. 10. № 6. P. 318. https://doi.org/10.1002/cvde.200306302
  5. 5. Sukhorukov Yu.P., Telegin A.V., Bessonov V.D. et al. // J. Magn. Magn. Mater. 2014. V. 367. P. 53. https://doi.org/10.1016/j.jmmm.2014.04.055
  6. 6. Sonsteby H.H., Bratvold J.E., Killi V.A.-L.K. et al. // J. Vac. Sci. Technol. A. 2020. V. 38. № 6. 060804. https://doi.org/doi:10.1116/6.0000589
  7. 7. Nuwayhid R.B., Fontecha D., Kozen A.C. et al. // Dalton Trans. 2022. V. 51. № 5. P. 2068. https://doi.org/10.1039/D1DT03736F
  8. 8. Tsymbarenko D., Korsakov I., Mankevich A. et al. // ECS Trans. 2009. V. 25. № 8. P. 633. https://doi.org/10.1149/1.3207650
  9. 9. Onoe A., Tasaki Y., Chikuma K. // J. Cryst. Growth. 2005. V. 277. № 1–4. P. 546. https://doi.org/10.1016/j.jcrysgro.2005.01.077
  10. 10. Sonsteby H.H., Weibye K., Bratvold J.E. et al. // Dalton Trans. 2017. V. 46. № 46. P. 16139. https://doi.org/10.1039/C7DT03753H
  11. 11. Weiss A., Popov G., Atosuo E. et al. // Chem. Mater. 2022. V. 34. № 13. P. 6087. https://doi.org/10.1021/acs.chemmater.2c01202
  12. 12. Ojeda-Amador A.I., Martinez-Martinez A.J., Kennedy A.R. et al. // Inorg. Chem. 2016. V. 55. № 11. P. 5719. https://doi.org/10.1021/acs.inorgchem.6b00839
  13. 13. Малкерова И.П., Белова Е.В., Каюмова Д.Б. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 638. https://doi.org/10.1134/S0036023623600557
  14. 14. Troyanov S.I., Gorbenko O.Yu., Bosak A.A. // Polyhedron. 1999. V. 18. № 26. P. 3505. https://doi.org/10.1016/S0277-5387 (99)00288-0
  15. 15. Dhanapala B.D., Munasinghe H.N., Suescun L. et al. // Inorg. Chem. 2017. V. 56. № 21. P. 13311–13320. https://doi.org/10.1021/acs.inorgchem.7b02075
  16. 16. Singh V.S., Dhakaie S.R., Belsare P.D. et al. // J. Opt. 2023. V. 52. № 4. P. 2153. https://doi.org/10.1007/s12596-023-01226-6
  17. 17. Vink T.J., Balkenende A.R., Verbeek R.G.F.A. et al. // Appl. Phys. Lett., 2002. T. 80. V. 12. P. 2216. https://doi.org/10.1063/1.1464229
  18. 18. Wong K.W., Wang Y.M., Lee S.T. et al. // Appl. Surf. Sci. 1999. V. 140. № 1–2. P. 144. https://doi.org/10.1016/S0169-4332 (98)00582-0
  19. 19. Dear R.E.A., Fox W.B., Fredericks R.J. et al. // Inorg. Chem. 1970. V. 9. № 11. P. 2590. https://doi.org/10.1021/ic50093a044
  20. 20. White V.E. // Org. Mass Spectr. 1978. V. 13. № 9. P. 495. https://doi.org/10.1002/oms.1210130903
  21. 21. Belcher R., Dudeney A.W.L., Stephen W.I. // J. Inorg. Nucl. Chem. 1969. V. 31. № 3. P. 625. https://doi.org/10.1016/0022-1902 (69)80007-2
  22. 22. Кочелаков Д.В., Викулова Е.С., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 1. 104595 https://doi.org/10.1134/S0022476623010055
  23. 23. Fabhrizzi L. // ChemTexts. 2020. № 6. P. 1. https://doi.org/10.1007/s40828-020-0107-2
  24. 24. Steed J.W. // Coord. Chem. Rev. 2001. V. 215. № 1. P. 171. https://doi.org/10.1016/S0010-8545 (01)00317-4
  25. 25. Кочелаков Д.В., Викулова Е.С., Куратьева Н.В. и др. // Журн. структур. химии. 2022. Т. 63. № 3. C. 375. https://doi.org/10.1134/S002247662301043
  26. 26. Evans W.J., Rego D.B., Ziller J.W. // Polyhedron. 2006. V. 25. № 14. P. 2691. https://doi.org/10.1016/j.poly.2006.03.011
  27. 27. Tikhova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sust. Develop. 2022. V. 30. № 6. P. 640. https://doi.org/10.15372/csd2022427
  28. 28. Bruker AXS Inc. APEX2 (version 2012.2-0), SAINT (version 8.18c), and SADABS (version 2008/1). Madison (WI, USA): Bruker Advanced X-ray Solutions, 2000–2012.
  29. 29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi:10.1107/S2053229614024218
  30. 30. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr., 2021. V. 54, P. 1006. https://doi.org/10.1107/S1600576721002910
  31. 31. Pedersen C.J. // J. Am. Chem. Soc. 1967. V. 89. № 26. P. 7017. https://doi.org/10.1021/ja010024035
  32. 32. Cambillau C., Bram G., Corset J. et al. // Tetrahedron. 1978. V. 34. № 17. P. 2675. https://doi.org/10.1016/0040-4020 (78)88404-X
  33. 33. Gagné O.C., Hawthorne F.C. // Acta Crystallogr. B. 2016. V. 72. № 4. P. 602. https://doi.org/10.1107/S2052520616008507
  34. 34. Rusanov E.B., Wörle M.D., Kowlenko M.V. et al. // Acta Crystallogr. B. 2024. V. 80. № 2. P. 135. https://doi.org/10.1107/S2052520624001586
  35. 35. Klett J. // Chem. Eur. J. 2020. V. 27. № 3. P. 888. https://doi.org/10.1002/chem.202002812
  36. 36. Bickelhaupt F.M., Solà M., Fonseca Guerra C. // J. Mol. Model. 2006. V. 12. № 5. P. 563. https://doi.org/10.1007/s00894-005-0056-0
  37. 37. Langreiter T., Kaltenberg V. // Crystals. 2015. V. 5. № 1. P. 143. https://doi.org/10.3390/cryst5010143
  38. 38. Savchenkov A.V., Uhanov A.S., Grigoriev M.S. et al. // Dalton Trans. 2021. V. 50. № 12. P. 4210. https://doi.org/10.1039/DODT04083E
  39. 39. Gromilov S.A., Borisov S.V. // J. Struct. Chem. 2003. V. 44. № 4. P. 664. https://doi.org/10.1023/B:JORY.0000017943.51537.b7
  40. 40. Borisov S.V. // J. Struct. Chem. 1986. V. 27. P. 164. https://doi.org/10.1080/00236568608584831
  41. 41. Borisov S.V. // J. Struct. Chem. 1992. V. 33. P. 112. https://doi.org/10.3828/extr.1992.33.2.112
  42. 42. Gromilov S.A., Bykova E.A., Borisov S.V. // Cryst. Rep. 2011. V. 56. № 6. P. 947. https://doi.org/10.1134/S1063774511060101
  43. 43. Peddagopu N., Sanzaro S., Rossi P. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 36. P. 3776. https://doi.org/10.1002/ejic.202100553
  44. 44. McMurdle H., Morris M., Evans E. et al. // Powder Diffraction. 1986, V. 1, P. 72.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека