RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Scandium(III) 1,1,1-Trifluorohexane-2,4-dionate Complex: Synthesis, Structure, and Thermal properties

PII
S3034549925100055-1
DOI
10.7868/S3034549925100055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 10
Pages
648-657
Abstract
A new scandium(III) 1,1,1-trifluorohexane-2,4-dionate complex [Sc(5Htfac)] was synthesized, purified, and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Its structure was determined at 150 K by X-ray diffraction analysis (CCDC No. 2433044). The complex has a molecular structure in which the bidentate cyclic ligands are arranged according to the α-sisomer. Shortened H...F interactions were identified in the structure. The thermal properties were studied by TGA and DSC, and the fusion temperature (309.3 ± 0.5 K), enthalpy (ΔH°(T) = 36.0 ± 1.4 kJ mol), and entropy (ΔS°(T) = 116.5 ± 4.5 J mol K) of fusion were determined. The temperature dependence of the saturated vapor pressure was measured by the flow method (343–433 K) and the static method with a membrane null manometer (410–470 K). On this basis, the thermodynamic characteristics of evaporation at average and standard temperatures were calculated (ΔH°(298.15 K) = 100.2 ± 1.3 kJ mol, ΔS°(298.15 K) = 201.8 ± 2.8 J mol K). From these data, the sublimation parameters of the complex were obtained (ΔH°(298.15 K) = 135.3 ± 1.9 kJ mol, ΔS°(298.15 K) = 315.3 ± 5.4 J mol K). The structure and thermal properties of [Sc(5Htfac)] were compared with those of two scandium(III) β-diketonates bearing methyl and tert-butyl substituents in the ligand.
Keywords
1,1,1-трифторгексан-2,4-дионат скандия(III) рентгеноструктурный анализ термические свойства энтальпия и энтропия парообразования и плавления
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
45

References

  1. 1. Makarenko A.M, Zaitsau D.H., Zherikova K.V. // Coatings. 2023. V. 13. № 3. P. 535. https://doi.org/10.3390/coatings13030535
  2. 2. Сартакова А.В., Макаренко А.М., Куратьева Н.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1217 . https://doi.org/10.1134/S003602362360140X
  3. 3. Макаренко А.М., Куратьева Н.В., Пищур Д.П. и др. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 221. https://doi.org/10.1134/S0036023622602215
  4. 4. Жерикова К.В., Куратьева Н.В. // Журн. структур. химии. 2019. Т. 60. № 10. С. 1688 https://doi.org/10.1134/S002247661910007X
  5. 5. Смоленцев А.Н., Жерикова К.В., Трусов М.С. и др. // Журн. структур. химии. 2011. Т. 52. № 6. С. 1108 https://doi.org/10.1134/S0022476611060059
  6. 6. Bennett D.W., Siddiquee T.A., Haworth D.T. et al. // J. Chem. Crystallogr. 2007. V. 37. P. 207. https://doi.org/10.1007/s10870-006-9171-8
  7. 7. Fadeeva V.P., Tikhonova V.D., Nikulicheva O.N. // J. Anal. Chem. 2008. V. 63. № 10. P. 1094.
  8. 8. Tikhonova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sustainable Development. 2020. V. 30. P. 640.
  9. 9. BrukerApex3SoftwareSuite:Apex3,SADABS-2016/2 and SAINT. Version 2019.1-0. Madison (WI, USA): Bruker AXS Inc., 2017.
  10. 10. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  11. 11. Суворов А.В. Термодинамическая химия парообразного состояния. Л.: Изд-во "Химия", 1970. С. 208.
  12. 12. Vikulova, E.S., Cherkasov, S.A., Nikolaeva, N.S. et al. // J. Therm. Anal. Calorim. 2019. V. 135. P. 2573. https://doi.org/10.1007/s10973-018-7371-z
  13. 13. Zherikova K.V., Makarenko, A.M., Morozova, N.B. // J. Therm. Anal. Calorim. 2022. V. 147. P. 14987. https://doi.org/10.1007/s10973-022-11683-z
  14. 14. Ermakova E., Sysoev S. V., Nikulina L.D. et al. // Thermochim. Acta. 2015. V. 622. P. 2. https://doi.org/10.1016/j.tca.2015.02.004
  15. 15. Morgan G.T., Moss H.W. Researches on residual affinity and co-ordination. Pt I. Metallic acetylacetones and their absorption spectra. 1914. V. 105. P. 189.
  16. 16. Zelenina L.N., Zherikova K.V., Chusova T.P. et al. // Thermochim. Acta. 2020. V. 689. P. 178639. https://doi.org/10.1016/j.tca.2020.178639
  17. 17. Bondi A. // J. Phys. Chem. 1964. V. 68. №3. Р. 441. https://doi.org/10.1021/j100785a001
  18. 18. Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // J. Chem. Thermodyn. 2016. V. 101. P. 162. https://doi.org/10.1016/j.jct.2016.05.020
  19. 19. Сартакова А.В., Макаренко А.М., Куратьева Н.В. и др. // Журн. структур. химии. 2024. Т. 65. №11. С. 135172. https://10.26902/jsc_id135172
  20. 20. Chickos J.S., Hesse D.G., Liebman J.F. // Struct. Chem. 1993. V. 4. №4. Р. 261. https://doi.org/10.1007/BF00673700
  21. 21. Zherikova K.V., Verevkin S.P. // Fluid Phase Equilibria. 2018. V. 472. P. 196. https://doi.org/10.1016/j.fluid.2018.05.004
  22. 22. Verevkin S.P., Emel'yanenko V.N., Zherikova K.V. et al. // Chem. Phys. Lett. 2020. V. 739. Р. 136911. https://doi.org/10.1016/j.cplett.2019.136911
  23. 23. Комиссарова Л.Н., Гуревич М.З., Сас Т.С. и др. // Журн. неорган. химии. 1978. Т. 23. С. 3145.
  24. 24. Matsubara N., Kuwamoto T. // Inorg. Chem. 1985. V. 24. Р. 2697. https://doi.org/10.1021/ic00211a022
  25. 25. Белова Н.В., Гирчев Г.В., Гирчева Н.И. и др. // Химия и хим. технол. 2012. Т. 55. №3. С. 50.
  26. 26. Игуменов И.К., Чумаченко Ю.В., Земское С.В. Тензиметрическое изучение летучих β-дикетонатов металлов. М.: Изд-во "Наука". 1982. С. 100.
  27. 27. Fahlman B.D., Barron A.R. // Adv. Mater. Opt. Electron. 2000. V. 10. Р. 223. https://doi.org/10.1002/1099-0712 (200005/10)10:3/53.0.CO;2-M
  28. 28. Макаренко А.М. Термодинамические процессы парообразования MOCVD предшественников на примере β-дикетонатных комплексов металлов(III). Дис. ... канд. хим. наук. Новосибирск, 2024. С. 137.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library