- Код статьи
- S30345499S0132344X25050039-1
- DOI
- 10.7868/S3034549925050039
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 51 / Номер выпуска 5
- Страницы
- 306-314
- Аннотация
- Взаимодействием триметилацетата (пивалата) кобальта(II) [Co(Fiv)2]n (HFiv = HO2CCMe3) с 1,4-диаминобутаном (Dab) в абсолютированном ацетонитриле получен 2D-координационный полимер [Co(Piv)2(Dab)2]n (I) с примесью сопродукта, но добавление в реакционную смесь одного эквивалента 2,2'-бипиридина позволило выделить однофазный образец I (по данным РФА) с выходом 78%. Кристаллическое строение I установлено методом РСА (CCDC № 2404406): атомы кобальта(II) в искаженном октаэдрическом окружении (CoN4O2) двух монодентатных карбоксилатных групп и четырех мостиковых молекул Dab формируют слоистый координационный полимер с сотоподобной топологией hcb. Термическое поведение I изучено синхронным термическим анализом: термический распад приводит к образованию органической соли (H2Dab)(Piv)2, пивалата кобальта(II), а также октаядерного комплекса [Co8O2(Piv)12] - продукты идентифицированы методом РФА и спектроскопией ЯМР.
- Ключевые слова
- координационные полимеры кобальт(П) триметилацетаты диамины рентгеноструктурный анализ рентгенофазовый анализ синхронный термический анализ
- Дата публикации
- 15.05.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 23
Библиография
- 1. Morritt G.H., Michaels H., Freitag M. // Chem. Phys. Rev. 2022. V. 3. Р. 011306.
- 2. Xiao X., Chen Z., Varley R.J., Li C. // Smart Molecules. 2024. V. 2. Р. E20230028.
- 3. Yin X., Chen X., Sun W. et al. // Energy Storage Mater. 2020.V. 25. P.846.
- 4. Maiti A., Maity D.K., Halder A., Ghoshal D. // Inorg Chem. 2023. V. 62. P. 12403.
- 5. Dybtsev D.N., Sapianik A.A., Fedin V.P. // Mendeleev Commun. 2017. V. 27. P. 321.
- 6. Aromí G., Batsanov A.S., Christian P. et al. // Chem. Eur. J. 2003. V. 9. P.5142.
- 7. Fursova E., Kuznetsova O., Ovcharenko V. et al. // Polyhedron 2007. V. 26. P.2079.
- 8. Golubnichaya M.A., Sidorov A.A., Fomina I.G. et al. // Russ. Chem. Bull. 1999. V. 48. P. 1751.
- 9. Bykov M., Emelina A., Kiskin M. et al. // Polyhedron. 2009. V. 28. P. 3628.
- 10. Zorina-Tikhonova E.N., Gogoleva N.V., Sidorov A.A. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. P.1396.
- 11. Fomina I.G., Aleksandrov G.G., Dobrokhotova Zh.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1909.
- 12. Shao D., Moorthy S., Yang X. et al. // Dalton Trans. 2022. V. 51. P. 695.
- 13. Wang J., Chen N.-N., Zhang C. et al. // CrystEngComm. 2020. V. 22. P. 811.
- 14. Sen A., Sato T., Ohno A. // JACS Au. 2021. V. 1. P. 2080.
- 15. Zhang H., Liu G., Shi L. et al. // Nano Energy. 2016. V. 22. P. 149.
- 16. Sanchis-Gual R., Coronado-Puchau M., Mallah T., Coronado E. // Coord. Chem. Rev. 2023. V. 480. P. 215025.
- 17. Peng Y., Liu X.-L., Xu Z. et al. // Sep. Purif. Technol. 2025. V. 353. P. 128360.
- 18. Yao W., Yang R., Xu B. et al. // Transition Met. Chem. 2024. V. 49. P. 331.
- 19. Bikash Baruah J. // Coord. Chem. Rev. 2022. V. 470. P. 214694.
- 20. Lian Y., Yang W., Zhang C. et al. // Ang. Chem. Intern. Ed. 2020. V. 59. P. 286.
- 21. Zorina-Tikhonova E.N., Matyukhina A.K., Chistyakov A.S. // New J. Chem. 2022. V. 46. P. 21245.
- 22. Chernomorova M.A., Myakinina M.S., Zhinzhilo V.A., Uflyand I.E. // Polymers (Basel). 2023. V. 15. P. 548.
- 23. Roose P., Eller K., Henkes E. et al. // Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, 2015. p. 1
- 24. Koning C., Teuwen L., Lacave-Goffin B., Mercier J.P. // Polymer. 2001. V. 42. P. 7247.
- 25. Jasinska L., Villani M., Wu J. et al. // Macromolecules. 2011. V. 44. P. 3458.
- 26. Gaymans R.J., Van Utteren T.E.C., Van Den Berg J.W.A., Schuyer J. // J. Polym. Sci., Polym. Chem. Ed. 1977. V. 15. P. 537.
- 27. Elsaidi S.K., Mohamed M.H., Banerjee D., Thallapally P.K. // Coord. Chem. Rev. 2018. V. 358. P. 125.
- 28. Sato O. // Nature. 2016. V. 8. P. 644.
- 29. Sato O., Tao J., Zhang Y.Z. // Ang. Chem. Intern. Ed. 2007. V. 46. P. 2152.
- 30. Pinkowicz D., Podgajny R., Sieklucka B. // Molecular Magnetic Materials: Concepts and Applications. Wiley, 2016. P. 279.
- 31. Polunin R.A., Kolotilov S. V, Kiskin M.A. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 4985.
- 32. Minkin V.I. // Russ. Chem. Bull. 2008. V. 57. P. 687.
- 33. Yambulatov D.S., Voronina J.K., Goloveshkin A.S. et al. // Int. J. Mol. Sci. 2022. V. 24. P. 215.
- 34. Yeşilel O.Z., Karamahmut B., Semerci F. et al. // J. Solid. State. Chem. 2017. V. 249. P. 174.
- 35. Li Y., Jiang Q., Cheng K. et al. // Z. Anorg. Allg. Chem. 2009. V.635. P. 2572.
- 36. You Z.-L., Zhu H.-L., Liu W.-S. // Acta Crystallogr. C. 2004.V. 60. P. m231.
- 37. Bushuev V.A., Gogoleva N.V., Nikolaevskii S.A. et al. // Molecules. 2024. V. 29. P. 2125.
- 38. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3.
- 39. Sheldrick G.M. // Acta Crystallogr. C. 2015, V. 71. P. 3.
- 40. Scarlett N.V.Y., Madsen I.C. // Powder Diffr. 2006. V. 21. P. 278.
- 41. Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643.
- 42. Hayashi Y., Santoro S., Azuma Y. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 6192.
- 43. Colthup N.B., Daly L.H., Widerley S.E. Introduction to Infrared and Raman Spectroscopy, Elsevier, 1975.
- 44. Stewart J.E. // J. Chem. Phys. 1959.V. 30. P. 1259.
- 45. Zeleňák V., Vargová Z., Györyová K. // Spectrochim, Acta. A. 2007. V. 66. P. 262.
- 46. Max J.J., Chapados C. // J. Phys. Chem. A. 2004. V. 108. P. 3324.
- 47. Strukl J.S., Walter J.L. // Spectrochim Acta. A. 1971. V. 27. P. 209.
- 48. Castellucci E., Angeloni L., Neto N., Sbrana G. // Chem. Phys. 1979. V. 43. P. 365.
- 49. Lutsenko I.A., Kiskin M.A., Nelyubina Y. V. // Polyhedron. 2020. V. 190. P. 114764.
- 50. Singh G., Singh C.P., Mannan S.M. // J. Hazard. Mater. 2005. V. 122. P. 111.
- 51. Sidorov A.A., Fomina I.G., Ponina M.O. // Russ. Chem. Bull. 2000. V. 49. P. 958.