RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Synthesis and Application of Chelated Complexes [Zn(Z-arg)2(H2O)] and [[Zn(Z-arg)2(H2O)](SO4)]2- as Chiral Selectors

PII
S30345499S0132344X25050042-1
DOI
10.7868/S3034549925050042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 5
Pages
315-326
Abstract
By interaction of compounds Zn(II) and L-arginine (L-Arg) the chelated complexes [Zn(L-arg)2(H2O)] (I) and [[Zn(L-arg)2(H2O)](SO4)]2- (II) (L-arg is a deprotonated form of L-Arg) were synthesized. The structure of the obtained complexes was established by IR spectroscopy by comparing the experimental and theoretical IR spectra using quantum chemical modeling. Complexes I and II were studied as chiral selectors of enantioselective voltammetric sensors. It was shown that I exhibits better enantioselective compared to II. By DFT method, it was found that the difference in the exhibited enantioselectivity of complexes I and II can be due of the geometric isomerism of chelate compounds and the peculiarities of the coordination of the obtained complexes with the analyte molecule.
Keywords
хелатные комплексы на основе Z-аргинина и ионов Zn(II) ИК-спектроскопия хиральные сенсоры энантиоселективность квантово-химическое моделирование
Date of publication
15.05.2025
Year of publication
2025
Number of purchasers
0
Views
37

References

  1. 1. Wojciechowska A., Janczak J., Rytlewski P. et al. // J. Mol. Struct. 2023. V. 1276. P. 134776.
  2. 2. Fita I., Campos J.L., Puigjaner L.C. et al. // J. Mol. Biol. 1983. V. 167. P. 157.
  3. 3. Yamauchi O., Odani A., Takani M. // Dalton Trans. 2002. V. 18. P. 3411.
  4. 4. Chow S.T., McAuliffe C.A. // J. Inorg. Nucl. Chem. 1975. V. 37. № 4. P. 1059.
  5. 5. Altowyan M.S., Yousri A., Albering J.H. et al. // Crystals. 2023. V. 13. № 9. P. 1375
  6. 6. Tainer J.A., Getzoff E.D., Richardson J.S., Richardson D.C. // Nature. 1983. V. 306. № 5940. P. 284.
  7. 7. Getzoff E.D., Tainer J.A., Weiner P.K. et al. // Nature. 1983. V. 306. № 5940. P. 287.
  8. 8. Zil’berg R.A., Zagitova L.R., Vakulin I.V. et al. // J. Anal. Chem. 2021. V. 76. Р. 1438.
  9. 9. Yarkaeva Y.A., Maistrenko V.N., Zagitova L.R. et al. // J. Electroanal. Chem. 2021. V. 903. Р. 115839.
  10. 10. Maistrenko V.N., Zil’berg R. // J. Anal. Chem. 2020. V. 75. Р. 1514.
  11. 11. Maistrenko V.N., Sidel’nikov A.V., Zil’berg R.A. // J. Anal. Chem. 2018. V. 73. Р. 1.
  12. 12. Zou J., Zhao G.-Q., Zhao G.-L., Yu J.-G. // Coord. Chem. Rev. 2022. V. 471. Р. 214732.
  13. 13. Niu X., Yang X., Li H., Liu J., Liu Z., Wang K. // Microchim. Acta. 2020. V. 187. Р. 676.
  14. 14. Salinas G., Niamlaem M., Kuhn A. Arnaboldi S. // Curr. Opin. Colloid Interface Sci. 2022. V. 61. Р. 101626.
  15. 15. Laurie S.H. Handbook of Metal-Ligand Interactions in Biological Fluids - Bioinorganic Chemistry. New York, 1995. V. 1. P. 603.
  16. 16. Clarke E.R., Martell A.E. // J. Inorg. Nucl. Chem. 1970. V. 32. № 3. P. 911.
  17. 17. Bottari E., Festa M.R., Gentile L. // Monatsh. Chem. 2014. V. 145. P. 1707.
  18. 18. Deschamps P., Kulkarni P.P., Sarkar B.X. // Inorg. Chem. V. 43. № 11. P. 2004
  19. 19. Schug K.A., Lindner W. // Chem. Rev. 2005. V. 105. P. 67.
  20. 20. Ohata N., Masuda H., Yamauchi O. // Kobunshi Ronbunshu. 2000. V. 57. № 4. P. 167.
  21. 21. Ohata N., Masuda H., Yamauchi O. // Inorg. Chim. Acta. 2000. V. 300-302. P. 749.
  22. 22. Ohata N., Masuda H., Yamauchi O. // Inorg. Chim. Acta. 1999. V. 286. P. 37.
  23. 23. Duarte M.T.L.S., Carrondo M.A.A.F.D.C.T., Simões Gonçalves M.L.S. et al. // Inorg. Chim. Acta. 1986. V. 124. P. 41.
  24. 24. Musioł1 K., Janczak J., Helios K. et al. // Res. Chem. Intermed. 2023. V. 49. P. 3563.
  25. 25. Yamauchi O., Odani A., Takanic M. // Dalton Trans. 2002. P. 3411.
  26. 26. Ohata N., Masuda H., Yamauchi O. // Angew. Chem. Int. Ed. 1996. V. 35. P. 531.
  27. 27. Alikhani M., Hakimi M., Moeini K. et al. // J. Inorg. Organomet. Polym. 2020. V. 30. P. 2907.
  28. 28. Köse D.A., Toprak E., Avcl E., Avcl G.A. // J. Chin. Chem. Soc. 2014. V. 61 P. 881.
  29. 29. Wojciechowska A., Kochel A., Duczmal M. // Mater. Chem. Phys. 2016. V. 182. P. 472.
  30. 30. Alagha A., Brown D.A., Elawad M et al. // Inorg. Chim. Acta. 2011. V. 377 P. 185.
  31. 31. Zilberg R.A., Teres J.B., Bulysheva E.O. et al. // Electrochim. Acta. 2024. V. 492. Р. 144334.
  32. 32. Zilberg R.A., Berestova T.V., Gizatov R.R. et al. // Inorganics. 2022. V. 10. Р. 117.
  33. 33. Yang M.-X., Zhou M.-J., Cao J.-P. // RSC Adv. 2020. V. 10. Р. 13759.
  34. 34. Chen X., Zhang S., Shan X. et al. // Anal. Chim. Acta. 2019. V. 1072. P. 54.
  35. 35. Zilberg R.A., Teres Y.B., Zagitova L.R. et al. // Anal. Control. 2021. V. 25. Р. 193.
  36. 36. Berestova T.V., Khursan S.L., Mustafin A.G. // J. Spectrochim. Acta. 2020. V. 229. Р. 117950.
  37. 37. Berestova T.V., Gizatov R.R., Galimov M.N., Mustafin A.G. //J. Mol. Struct. 2021. V. 1236. Р. 130303.
  38. 38. Zhao Y., Truhlar D.G. // J. Theor. Chem. Acc. 2008. V. 120. Р. 215.
  39. 39. Yoon U., Kim J., Kim S.H., Jeong K. // RSC Adv. 2024. V. 14. Р. 1051.
  40. 40. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford (CT): Gaussian Inc., 2016. https://gaussian.com/g09citation
  41. 41. Andrienko G.A. Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
  42. 42. Hu C., Xiang C., Zhangqiang Y. Patent CN108383746A, 2018, C07C 229/76, C07C 227/18.
  43. 43. Berestova T.V., Kuzina L.G., Amineva N.A. et al. // J. Mol. Struct. 2017. V. 1137. P. 260.
  44. 44. Kolesov S.V., Gurinaand M.S., Mudarisova R.K. // Polym. Sci. A. 2019. V. 61. P. 253.
  45. 45. Berestova T.V., Nosenko K.N., Lusina O.V. et al. // J. Struct. Chem. 2020. V. 61. P. 1876.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library