RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Synthesis and Structure of Tetraphenylstibonium Organosulfonates Ph4SbOSO2R, R = C10H15O, C10H4(OH-1)(NO2)2-2,4, C10H7-1, C6H4(COOH-2)

PII
10.31857/S0132344X22600230-1
DOI
10.31857/S0132344X22600230
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 5
Pages
315-320
Abstract
The reaction of equimolar amounts of pentaphenylantimony with camphor-10-sulfonic, 2,4-dinitro-1-naphthol-7-sulfonic (flavianic), 1-naphthalenesulfonic, and 2-sulfobenzoic acids in benzene resulted in the synthesis of tetraphenylstibonium organosulfonates Ph4SbOSO2C10H15O∙H2O (I), Ph4SbOSO2C10H4(OH-1)(NO2)2-2,4∙PhH (II), Ph4SbOSO2(C10H7-1)∙H2O (III), and Ph4SbOSO2C6H4(COOH-2) (IV). According to X-ray diffraction data (CCDC no. 2119791 (I), 2121381 (II), 2116582 (III), and 2123516 (IV), the crystal of I contains trigonal-bipyramidal sulfonate molecules (the axial Sb−C and Sb−O bond lengths are 2.130(3) and 2.565(2) Å, respectively) and hydration water molecules, which form a centrosymmetric eight-membered ring (the S=O∙∙∙H−O−H∙∙∙O=S distances are 2.06 and 2.21 Å). In the molecules of II, the metal atom geometry is a distorted trigonal bipyramid (the axial Sb−C and Sb−O bonds are 2.133(2) and 2.643(3) Å, respectively). The Sb−O distance (2.842(3) Å) is longer in III than in I or II; the hydration water molecules form centrosymmetric twelve-membered rings with the anions (the S=O∙∙∙H−O−H∙∙∙O=S distances are 2.02 and 2.05 Å). Meanwhile, the crystal of compound IV consists of tetrahedral tetraphenylstibonium cations and (2-carboxy)benzenesulfonate anions with the intramolecular O−H∙∙∙O=S hydrogen bond (1.75 Å).
Keywords
органосульфонат тетрафенилстибония синтез рентгеноструктурные исследования
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
12

References

  1. 1. Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. химия. 2020. Т. 46. № 10. С. 579 (Sharutin V.V., Poddel’sky A.I., Sharutina O.K. // Russ. J. Coord. Chem. 2020. V. 46. № 10. P. 663). https://doi.org/10.1134/S1070328420100012
  2. 2. Mishra J., Saxena A. Singh S. // Curr. Med. Chem. 2007. V. 14. P. 1153. https://doi.org/10.2174/092986707780362862
  3. 3. Mushtaq R., Rauf M.K., Bond M. et al. // Appl. Organomet. Chem. 2016. V. 30. P. 465. https://doi.org/10.1002/aoc.3456
  4. 4. Saleem L., Altaf A.A., Badshah A. et al. // Inorg.Chim. Acta. 2018. V. 474. P. 148. https://doi.org/10.1016/j.ica.2018.01.036
  5. 5. Oliveira L.G., Silva M.M., Paula F.C.S. et al. //Molecules. 2011. V. 16. P. 10314. https://doi.org/10.3390/molecules161210314
  6. 6. Islam A., Da Silva J.G., Berbet F.M. et al. // Molecules. 2014. V. 19. P. 6009. https://doi.org/10.3390/molecules19056009
  7. 7. Mushtaq R., Rauf M.K., Bolte M. et al. // Appl. Organomet. Chem. 2017. V. 31. e3606. https://doi.org/10.1002/aoc.3606
  8. 8. Yu L., Ma Y.-Q., Liu R.-C. et al. // Polyhedron. 2004. V. 23. P. 823. https://doi.org/10.1016/j.poly.2003.12.002
  9. 9. Wang F., Yin H., Yue C. et al. // J. Organomet. Chem. 2013. V. 738. P. 35. https://doi.org/10.1016/j.jorganchem.2013.03.046
  10. 10. Islam A., Rodrigues B.L., Marzano I.M. et al. // Eur. J. Med. Chem. 2016. V. 109. P. 254. https://doi.org/10.1016/j.ejmech.2016.01.003
  11. 11. Iftikhar T., Rauf M.K., Sarwar S. et al. // J. Organomet. Chem. 2017. V. 851. P. 89. https://doi.org/10.1016/j.jorganchem.2017.09.002
  12. 12. Jiang J., Yin H., Wang D. et al. // Dalton Trans. 2013. V. 42. P. 8563. https://doi.org/10.1039/c3dt50221j
  13. 13. Yu L., Ma Y.-Q., Wang G.-C., Li J.-S. // Heteroat. Chem. 2004. V. 15. P. 32. https://doi.org/10.1002/hc.10208
  14. 14. Polychronis N.M., Banti C.N., Raptopoulou C.P. et al. // Inorg. Chim. Acta. 2019. V. 489. P. 39. https://doi.org/10.1016/j.ica.2019.02.004
  15. 15. Шарутин В.В., Шарутина О.К., Пакусина А.П. и др. // Коорд. химия. 2004. Т. 30. № 1. С. 15 (Sharutin V.V., Sharutina O.K., Pakusina A.P. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 1. P. 13). https://doi.org/10.1023/B:RUCO.0000011636.28262.d3
  16. 16. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганический химии. Сурьма, висмут. М.: Наука, 1976. 485 с.
  17. 17. SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
  18. 18. SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison (WI, USA): Bruker AXS Inc., 1998.
  19. 19. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  20. 20. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. V. 21. P. 2832. https://doi.org/10.1039/B801115J
  21. 21. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
  22. 22. Ferrer E.G., Williams P.A.M., Castellano E.E., Piro O.E. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 1979. https://doi.org/10.1002/1521-3749 (200209)628:9/10< 1979::AID-ZAAC1979>3.0.CO;2-V
  23. 23. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 438 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library