RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Monovalent Thulium. Synthesis and Properties of TmI

PII
10.31857/S0132344X22600357-1
DOI
10.31857/S0132344X22600357
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 5
Pages
303-307
Abstract
The reaction of thulium shavings with iodine at 680°C gave a poorly separable product mixture A, consisting of thulium metal (65%), TmI2 (14%), and TmI (21%). Monovalent thulium iodide could not be isolated in a pure state, but its presence among the products was confirmed, apart from magnetic measurements, by reactions with naphthalene and perylene, which proceed under mild conditions. The reaction of TmI with naphthalene, which takes place at –40°C, affords the trivalent thulium complex with naphthalene dianion, [TmI(C10H8)(DME)3]. The multistep reaction with perylene starts with the formation of the divalent thulium radical anion complex, [(TmI)+(C20H12)–•(DME)3], and ends in the formation of trivalent thulium complex, [(TmI)2+(C20H12)2–(DME)3]. The presence of a radical anion intermediate in the reaction mixture in an early stage was confirmed by ESR spectroscopy.
Keywords
одновалентный тулий иодид тулия магнитный момент реакционная способность нафталин перилен анион-радикал
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
8

References

  1. 1. Arnold P.L., Cloke F.G.N., Nixon J. F. // Chem. Commun. 1998. P. 797.
  2. 2. Arnold P.L., Cloke F.G.N., Hitchcock P.B., Nixon J.F. // J. Am. Chem. Soc. 1996. V. 118. № 32. P. 7630.
  3. 3. Martin J.D., Corbett J.D. // Angew. Chem. Int. Ed. E-ngl. 1995. V. 34. № 2. P. 233.
  4. 4. Bochkarev M.N. // Coord. Chem. Rev. 2004. V. 248. P. 835.
  5. 5. Fong F.K., Cape J.A., Wong E.Y. // Phys. Rev. 1966. V. 151. P. 299.
  6. 6. Dirscherl R., Lee H.U. // J. Chem. Phys. 1980. V. 73. P. 3831.
  7. 7. Li W.-L., Chen T.-T., Chen W.-J. et al. // Nature Commun. 2021. V. 12. P. 6467.
  8. 8. Kȁning M., Hitzschke L., Schalk B. et al. // J. Phys. D. 2011. V. 44. № 22. Art. 224005.
  9. 9. Kȁning M., Schalk B., Schneidenbach H. // J. Phys. D. 2007. V. 40. P. 3815.
  10. 10. Бочкарев М.Н., Фагин А.А., Хорошеньков Г.В. // Изв. АН. Сер. хим. 2002. С. 1757 (Bochkarev M.N., Fagin A.A., Khoroshenkov G.V. // Russ. Chem. Bull. Int. Ed. 2002. V. 51. P. 1909).
  11. 11. Хорошеньков Г.В., Фагин А.А., Бочкарев М.Н. и др. // Изв. АН. Сер. хим. 2003. С. 1627 (Khoroshenkov G.V., Fagin A.A., Bochkarev M.N. et al. // Russ. Chem. Bull. 2003. V. 52. P. 1715).
  12. 12. Фагин А.А., Бухвалова С.Ю., Бочкарев М.Н. // Коорд. химия. 2022. Т. 48. № 11. С. 686 (Fagin A.A., Bukhvalova S.Yu., Bochkarev M.N. // Russ. J. Coord. Chem. 2022. V. 48. P. 741). https://doi.org/10.1134/S1070328422110045
  13. 13. Бочкарев М.Н., Протченко А.П. // Приборы и техника эксперимента. 1990. № 1. С. 194.
  14. 14. Bochkarev M.N., Fedushkin I.L., Fagin A.A. et al. // Angew. Chem. Int. Ed. 1997. V. 36. № 1–2. P. 133.
  15. 15. Bochkarev M.N., Fedushkin I.L., Fagin A.A. et al. // Chem. Commun. 1997. P. 1783.
  16. 16. Evans W.J., Allen N.T., Ziller J.W. // J. Am. Chem. Soc. 2000. V. 122. P. 11749.
  17. 17. Levason W., Matthews M.L., Reid G. et al. // Dalton Trans. 2004. P. 51.
  18. 18. Taylor W.V., Xie Z.-L., Cool N.I. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 10364.
  19. 19. Brown M.D., Levason W., Reid G. et al. // Dalton Trans. 2006. P. 5648.
  20. 20. Mashima K., Nakayama Y., Nakamura A. et al. // J. Organomet. Chem. 1994. V. 473. P. 85.
  21. 21. Münzfeld L., Schoo C., Bestgen S. et al. // Nature Commun. 2019. V. 10. Art. 3135.
  22. 22. Segal B.G., Kaplan M., Fraenkel G.K. // J. Chem. Phys. 1965. V. 43. P. 4191.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library