RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Bromoantimonates(III) vs. Bromobismuthates(III): Differences in the Tendency for the Formation of Polynuclear Complexes

PII
10.31857/S0132344X22600400-1
DOI
10.31857/S0132344X22600400
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 6
Pages
341-346
Abstract
Pyridine-based Sb(III) bromide complexes with doubly charged cations, (PyC3)3[Sb2Br9]2 (I), (PyC4)[Sb2Br8] (II), (PyC5)2[α-Sb4Br16] (III), (PyC6)2[Sb2Br10] (IV), (4-MePyC2)2[Sb2Br10] (V), (4‑MePyC3)2[α-Sb4Br16] (VI), and (4-MePyC5)2[α-Sb4Br16] (VII), were synthesized and characterized by X-ray diffraction (CCDC nos. 2204718–2204724). The structures of these compounds were compared with the structures of related bromobismuthates(III).
Keywords
сурьма висмут галогенидные комплексы полиядерные комплексы рентгеноструктурный анализ
Date of publication
01.06.2023
Year of publication
2023
Number of purchasers
0
Views
13

References

  1. 1. Wu L.-M., Wu X.-T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/J.CCR.2009.08.003
  2. 2. Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/J.CCR.2015.10.010
  3. 3. Yue C.-Y., Hu B., Lei X.-W. et al. // Inorg. Chem. 2017. V. 56. № 18. P. 10962. https://doi.org/10.1021/acs.inorgchem.7b01171
  4. 4. Lei X.-W., Yue C.-Y., Wang S. et al. // Dalton Trans. 2017. V. 46. № 13. P. 4209. https://doi.org/10.1039/c7dt00262a
  5. 5. Lei X.-W., Yue C.-Y., Wu F. et al. // Inorg. Chem. Commun. 2017. V. 77. P. 64. https://doi.org/10.1016/J.INOCHE.2017.01.010
  6. 6. Lei X.-W., Yue C.-Y., Zhao J.-Q. et al. // Inorg. Chem. 2015. V. 54. № 22. P. 10593. https://doi.org/10.1021/acs.inorgchem.5b01324
  7. 7. Bi W., Leblanc N., Mercier N. et al. // Chem. Mater. 2009. V. 21. № 18. P. 4099. https://doi.org/10.1021/cm9016003
  8. 8. Wojta M., Bator G., Jakubas R. et al. // J. Phys. Condens. Matter 2003. V. 15. № 33. P. 5765. https://doi.org/10.1088/0953-8984/15/33/310
  9. 9. Leblanc N., Mercier N., Allain M. et al. // J. Solid State Chem. 2012. V. 195. P. 140. https://doi.org/10.1016/J.JSSC.2012.03.020
  10. 10. Marchenko E.I., Fateev S.A., Petrov A.A. et al. // J. Phys. Chem. C. 2019. V. 123. № 42. P. 26036. https://doi.org/10.1021/acs.jpcc.9b08995
  11. 11. Frolova L.A., Anokhin D.V., Piryazev A.A. et al. // J. Phys. Chem. Lett. 2017. V. 8. № 7. P. 1651. https://doi.org/10.1021/acs.jpclett.7b00210
  12. 12. Belich N.A., Tychinina A.S., Kuznetsov V.V. et al. // Mendeleev Commun. 2018. V. 28. № 5. P. 487. https://doi.org/10.1016/j.mencom.2018.09.011
  13. 13. Fateev S.A., Petrov A.A., Khrustalev V.N. et al. // Chem. Mater. 2018. V. 30. № 15. P. 5237. https://doi.org/10.1021/acs.chemmater.8b01906
  14. 14. Petrov A.A., Sokolova I.P., Belich N.A. et al. // J. Phys. Chem. C. 2017. V. 121. № 38. P. 20739. https://doi.org/10.1021/acs.jpcc.7b08468
  15. 15. Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992. https://doi.org/10.1134/S0036023622070075
  16. 16. Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
  17. 17. Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
  18. 18. Petrov A.A., Fateev S.A., Khrustalev V.N. et al. // Chem. Mater. 2020. V. 32. № 18. P. 7739. https://doi.org/10.1021/acs.chemmater.0c02156
  19. 19. Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
  20. 20. Krautscheid H. // Zeitschrift Anorg. Allg. Chem. 1995. V. 621. № 12. P. 2049. https://doi.org/10.1002/zaac.19956211212
  21. 21. Krautscheid H., Vielsack F. // Angew. Chem. Int. Ed. 1995. V. 34. № 18. P. 2035. https://doi.org/10.1002/anie.199520351
  22. 22. Adonin S.A., Sokolov M.N., Fedin V.P. // Russ. J. Inorg. Chem. 2017. V. 62. № 14. https://doi.org/10.1134/S0036023617140029
  23. 23. Mercier N., Louvain N., Bi W. // CrystEngComm. 2009. V. 11. № 5. P. 720. https://doi.org/10.1039/b817891g
  24. 24. Adonin S.A., Gorokh I.D., Novikov A.S. et al. // Polyhedron. 2018. V. 139. https://doi.org/10.1016/j.poly.2017.11.002
  25. 25. Adonin S.A., Gorokh I.D., Samsonenko D.G. et al. // Polyhedron. 2019. V. 159. P. 318. https://doi.org/10.1016/J.POLY.2018.12.017
  26. 26. Fisher G.A., Norman N.C. // Adv. Inorg. Chem. 1994. V. 41. P. 233. https://doi.org/10.1016/S0898-8838 (08)60173-7
  27. 27. Kotov V.Y., Ilyukhin A.B., Simonenko N.P. et al. // Polyhedron. 2017. V. 137. P. 122. https://doi.org/10.1016/J.POLY.2017.08.016
  28. 28. Kotov V.Y., Simonenko N.P., Ilyukhin A.B. // Mendeleev Commun. 2017. V. 27. № 5. P. 454. https://doi.org/10.1016/J.MENCOM.2017.09.007
  29. 29. Kotov V.Y., Ilyukhin A.B., Sadovnikov A.A. et al. // Mendeleev Commun. 2017. V. 27. № 3. P. 271. https://doi.org/10.1016/J.MENCOM.2017.05.018
  30. 30. Buikin P.A., Rudenko A.Y., Baranchikov A.E. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 6. P. 373. https://doi.org/10.1134/S1070328418060015
  31. 31. Chang J.-C., Ho W.-Y., Sun I.-W. et al. // Polyhedron. 2010. V. 29. № 15. P. 2976. https://doi.org/10.1016/j.poly.2010.08.010
  32. 32. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  33. 33. Hübschle C.B., Sheldrick G.M., Dittrich B. et al. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
  34. 34. Zhang W., Sun Z., Zhang J. et al. // J. Mater. Chem. C. 2017. V. 5. № 38. P. 9967. https://doi.org/10.1039/c7tc02721d
  35. 35. Stewart J.M., McLaughlin K.L., Rossiter J.J. et al. // Inorg. Chem. 1974. V. 13. № 11. P. 2767. https://doi.org/10.1021/ic50141a046
  36. 36. Terao H., Ninomiya S., Hashimoto M. et al. // J. Mol. Struct. 2010. V. 965. № 1–3. P. 68. https://doi.org/10.1016/J.MOLSTRUC.2009.11.040
  37. 37. Kharrat H., Kamoun S., Michaud F. // Acta Crystallogr. E. 2013. V. 69. № 7. P. M353. https://doi.org/10.1107/S1600536813014335
  38. 38. Sun Z., Zeb A., Liu S. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 39. P. 11854. https://doi.org/10.1002/anie.201606079
  39. 39. Hall M., Nunn M., Begley M.J. et al. // Dalton Trans. 1986. № 6. P. 1231. https://doi.org/10.1039/DT9860001231
  40. 40. Wojtaś M., Jakubas R., Ciunik Z. et al. // J. Solid State Chem. 2004. V. 177. № 4–5. P. 1575. https://doi.org/10.1016/J.JSSC.2003.12.011
  41. 41. Bujak M., Zaleski J. // Acta Crystallogr. E. 2007. V. 63. № 1. P. M102. https://doi.org/10.1107/S1600536806051920
  42. 42. Jaschinski B., Blachnik R., Reuter H. // Z. Anorg. Allg. Chem. 1999. V. 625. № 4. P. 667. https://doi.org/10.1002/ (SICI)1521-3749(199904)625: 43.0.CO;2-B
  43. 43. Porter S.K., Jacobson R.A. // J. Chem. Soc. A. 1970. P. 1359. https://doi.org/10.1039/J19700001359
  44. 44. Jha N.K., Rizvi S.S.A. // J. Inorg. Nucl. Chem. 1974. V. 36. № 7. P. 1479. https://doi.org/10.1016/0022-1902 (74)80610-X
  45. 45. Wang Q., Zhang W.-Y., Shi P.-P. et al. // Chem. – An Asian J. 2018. V. 13. № 19. P. 2916. https://doi.org/10.1002/asia.201801056
  46. 46. Wang Y.K., Wu Y.L., Lin X.Y. et al. // J. Mol. Struct. 2018. V. 1151. P. 81. https://doi.org/10.1016/j.molstruc.2017.09.033
  47. 47. Dennington A.J., Weller M.T. // Dalton Trans. 2018. V. 47. № 10. P. 3469. https://doi.org/10.1039/c7dt04280a
  48. 48. Sharutin V.V., Pakusina A.P., Sharutina O.K. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 8. P. 541. https://doi.org/10.1023/B:RUCO.0000037432.61330.07
  49. 49. Antolini L., Benedetti A., Fabretti A.C. et al. // Dalton Trans. 1988. № 9. P. 2501. https://doi.org/10.1039/DT9880002501
  50. 50. Wojtaś M., Bil A., Gagor A. et al. // CrystEngComm. 2016. V. 18. № 14. P. 2413. https://doi.org/10.1039/c6ce00160b
  51. 51. Alcock N.W., Ravindran M., Willey G.R. // Chem. Commun. 1989. № 15. P. 1063. https://doi.org/10.1039/C39890001063
  52. 52. Krautscheid H. // Z. Anorg. Allg. Chem. 1999. V. 625. № 2. P. 192. https://doi.org/10.1002/ (SICI)1521-3749(199902)625: 23.0.CO;2-6
  53. 53. Usoltsev A.N., Sukhikh T.S., Novikov A.S. et al. // Inorg. Chem. 2021. https://doi.org/10.1021/acs.inorgchem.0c03699
  54. 54. Adonin S.A., Rakhmanova M.I., Samsonenko D.G. et al. // Inorg. Chim. Acta. 2016. V. 450. https://doi.org/10.1016/j.ica.2016.06.010
  55. 55. Usol’tsev A.N., Sokolov M.N., Fedin V.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 827. https://doi.org/10.1134/S003602362106019X
  56. 56. Adonin S.A., Gorokh I.D., Samsonenko D.G. et al. // Inorg. Chim. Acta. 2018. V. 469. https://doi.org/10.1016/j.ica.2017.08.058
  57. 57. Usol’tsev A.N., Petrov M.D., Korol’kov I.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 9. P. 620. https://doi.org/10.1134/S107032842108008X
  58. 58. Adonin S.A., Sokolov M.N., Fedin V.P. // J. Struct. Chem. 2019. V. 60. № 10. P. 1655. https://doi.org/10.1134/S0022476619100111
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library