RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Influence of the Aromatic Ligand Nature and Synthesis Conditions on the Structures of the Copper Pentafluorobenzoate Complexes

PII
10.31857/S0132344X22600503-1
DOI
10.31857/S0132344X22600503
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 4
Pages
229-245
Abstract
New pentafluorobenzoate (Рfb) copper complexes with 2,3- and 3,5-lutidine (2,3- and 3,5-Lut, respectively), quinoline (Quin), and 1,10-phenanthroline (Рhen) ([Cu2(MeCN)2(Рfb)4] (I), [Cu(2,3-Lut)2(Pfb)2] (II), [Cu(3,5-Lut)4(Pfb)2] (III), [Cu(Quin)2(Pfb)2] (IV), and [Cu2(Phen)2(Pfb)4] (V)) are synthesized by the newly developed methods and characterized. The unusual heteroanionic pentafluorobenzoate benzoate (Вnz) ionic compound [Cu2(Рhen)2(Рfb)3]+(Рnz)– (VI) is synthesized. It is shown that the four-bridge binuclear metal cage of complex I is not retained in the reactions with various pyridine derivatives. In the case of such α-substituted pyridines as 2,3-lutidine and quinoline, the compositions and structures of the final products of the reactions with copper pentafluorobenzoate are independent of the initial ratio of the reagents and crystallization conditions. It is revealed by the Hirshfeld surface analysis that π···π, C–F···π, C–H···F, and F···F interactions make the major contribution to the stabilization of crystal packings of the synthesized complexes.
Keywords
пентафторбензоаты меди гетероанионные комплексы нековалентные взаимодействия поверхность Хиршфельда
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
10

References

  1. 1. Zhang Z., Zaworotko M.J. // Chem. Soc. Rev. 2014. V. 43. P. 5444.
  2. 2. Bradberry S.J., Savyasachi A.J., Martinez-Calvo M., Gunnlaugsson T. // Coord. Chem. Rev. 2014. V. 273–274. P. 226.
  3. 3. Chen D.-M., Zhang N.-N., Liu C.-S., Du M. // J. Mater. Chem. C. 2017. V. 5. P. 2311.
  4. 4. Kohnke F.H., Mathias J.P., Fraser Stoddart J. // Angew. Chem. 1989. V. 28. № 8. P. 1103.
  5. 5. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Polyhedron. 2022. V. 228. Art. 116174.
  6. 6. Barry D.E., Caffreya D.F., Gunnlaugsson T. // Chem. Soc. Rev. 2016. V. 45. P. 3244.
  7. 7. Su J., Yuan S., Cheng Y.-X. et al. // Chem. Sci. 2021. V. 12. P. 14254.
  8. 8. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 7. № 5. P. 830.
  9. 9. Bondarenko M.A., Novikov A.S., Sokolov M.N., Adonin S.A. // Organics. 2022. V. 10. № 10. P. 151.
  10. 10. Adonin S.A., Bondarenko M.A., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 289.
  11. 11. Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. P. 508.
  12. 12. Zhou W.-L., Chen Y., Lin W., Liu Y. // Chem. Commun. 2021. V. 57 P. 11443.
  13. 13. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
  14. 14. Adonin S.A., Novikov A.S., Sokolov M.N., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 302.
  15. 15. Adonin S.A., Novikov A.S., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 37.
  16. 16. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. Art. 194.
  17. 17. Sharma R.P., Saini A., Kumar S. et al. // J. Mol. Struct. 2017. V. 1128. P. 135.
  18. 18. Shmelev M.A., Voronina Yu.K., Chekurova S. S. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 551.
  19. 19. Kong Y.-J., Han L.-J., Fan L.-T. et al. // J. Fluor. Chem. 2016. V. 186. P. 40.
  20. 20. Han L.-J., Kong Y.-J. // Z. Anorg. Allg. Chem. 2014. V. 640. № 10. P. 2007.
  21. 21. Shmelev M.A., Voronina Yu. K. Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224.
  22. 22. Malkerova I.P., Kayumova D.B., Belova E.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 10. P. 608.
  23. 23. Pinto C.B., Dos Santos L.H.R., Rodrigues B.L. // J. A-ppl. Crystallogr. 2020. V. 53. P. 1321.
  24. 24. Sen S., Saha M.K., Gupta T. et al. // J. Chem. Crystallogr. 1998. V. 28. P. 771.
  25. 25. Andruh M., Roesky H.W., Noltemeyer M., Schmidt H.-G. // Polyhedron. 1993. V. 12. № 23. P. 2901.
  26. 26. Harding M.M. // Acta Crystallogr. D. 2000. V. 56. P. 857.
  27. 27. Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. Art. 15644.
  28. 28. Li Z., Yuan Y., Zhang Y. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. № 10. P. 647.
  29. 29. Sanchez-Sala M., Pons J., Álvarez-Larena Á. et al. // ChemistrySelect. 2017. V. 2. № 35. P. 11574.
  30. 30. Obaleye J.A., Ajibola A.A., Bernardus V.B., Hosten E.C. // J. Mol. Struct. 2020. V. 1203. Art.127435.
  31. 31. Rajakannu P., Kaleeswaran D., Banerjee S. et al. // Inorg. Chim. Acta. 2019. V. 486. P. 283.
  32. 32. Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557.
  33. 33. Larionov S.V., Glinskaya L.A., Klevtsova R.F. et al. // Z. Neorg. Khim. 1991. V. 36. P. 2514.
  34. 34. Han L.-J., Kong Y.-J., Huang M.-M. // Inorg. Chim. Acta. 2020. V. 514. Art. 120019.
  35. 35. Hashim I.I., Scattolin T., Tzouras N.V. et al. // Dalton Trans. 2022. V. 51. P. 231.
  36. 36. Makoto H., Yoshiyuki I., Taku Y. et al. // Bull. Chem. Soc. Jpn. 2009. V. 82. № 10. P. 1277.
  37. 37. Han L.-J., Kong Y.-J. // Acta Crystallogr. C. 2014. V. 70. № 11. P. 1017.
  38. 38. Sharma R.P., Saini A., Singh S. et al. // J. Fluor. Chem. 2010. V. 131. № 4. P. 456.
  39. 39. Ge C., Zhang X., Yu F. et al. // J. Chem. Crystallogr. 2008. V. 38. P. 501.
  40. 40. Kuznetsova G.N., Nikolaevskii S.A., Yambulatov D.S. et al. // J. Struct. Chem. V. 62. № 2. P. 184.
  41. 41. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  42. 42. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  43. 43. Spek A.L. // Acta Crystallogr. D. 2009. V. 65. № 2. P. 148.
  44. 44. Dolomanov O.V., Bourhis L.J., Gildea R. et al. // J. A-ppl. Crystallogr. 2009. V. 42. P. 339.
  45. 45. Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
  46. 46. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Cryst. 2021. V. 54. P. 1006.
  47. 47. Edwards A.J., Mackenzie C.F., Spackman P.R. et al. // Faraday Discuss. 2017. V. 203. P. 93.
  48. 48. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539.
  49. 49. Shmelev M.A., Polunin R.A. Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
  50. 50. Belousov Y.A., Kiskin M.A., Sidoruk A.V. et al. // Aust. J. Chem. 2022. V. 75. № 9. P. 572.
  51. 51. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
  52. 52. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
  53. 53. Bovkunova A.A., Bazhina E., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. P. 12275.
  54. 54. Pushikhina O.S., Kozlyakova E.S., Karpova E.V., Tafeenko V.A. // Z. Anorg. Allg. Chem. 2021. V. 647. № 22. P. 2023.
  55. 55. Li Y., Zhang C., Yu J.-W. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 110.
  56. 56. Ge C., Zhang X., Yin J., Zhang R. // Chin. J. Chem. 2010. V. 28. № 10. P. 2083.
  57. 57. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // Inorg. Chim. Acta. 2021. V. 515. P. 120050.
  58. 58. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemSelect. 2020. V. 5. № 28. P. 8475.
  59. 59. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1544.
  60. 60. Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. P. 13349.
  61. 61. Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643.
  62. 62. Gogoleva N.V., Kuznetsova G.N., Shmelev M.A. et al. // J. Solid State Chem. 2021. V. 294. Art. 121842.
  63. 63. Wu B., Lu W., Zheng X. // Transition Met. Chem. 2003. V. 28. P. 323.
  64. 64. Shmelev M.A., Kuznetsova G.N., Dolgushin F.M. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 127.
  65. 65. Yambulatov D.S., Nikolaevskii S.A., Lutsenko I.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 772.
  66. 66. Zeng Z., Cai J., Li F. et al. // RSC Adv. 2021. V. 11. P. 40040.
  67. 67. Sharma P., Dutta D., Gomila R.M. et al. // Polyhedron. 2021. V. 208. Art. 115409.
  68. 68. Lah N., Giester G., Segedin P., Murn A. et al. // Acta Crystallogr. C. 2001. V. 57. P. 546.
  69. 69. Davey G., Stephens F.S. // J. Chem. Soc. A. 1971. P. 1917.
  70. 70. Davey G., Stephens F.S. // J. Chem. Soc. A. 1970. P. 2803.
  71. 71. Kozlevcar B., Lah N., Zlindra D. et al. // Acta Chim. Slov. 2001. V. 48. P. 363.
  72. 72. Kozlevcar B., Murn A., Podlipnik K. et al. // Croat. Chem. Acta. 2004. V. 77. P. 613.
  73. 73. Buijs W., Comba P., Corneli D. et al. // Eur. J. Inorg. Chem. 2001. P. 3143.
  74. 74. Li L.-M., Guo H.-M., Li Y.-F. // Z. Krist New – Cryst. Struct. 2012. V. 227. P. 257.
  75. 75. Dickie D.A., Schatte G., Jennings M.C. et al. // Inorg. Chem. 2006. V. 45. № 4. P. 1646.
  76. 76. Pradilla S.J., Chen H.W., Koknat F.W., Fackler J.P., Jr. // Inorg. Chem. 1979. V. 18. № 12. P. 3519.
  77. 77. Gajewska M.J., Ching W.-M., Wen Y.-S., Hung C.-H. // Dalton Trans. 2014. V. 43. P. 14726.
  78. 78. Ghosh S.K., Bharadwaj P.K. // Inorg. Chem. 2004. V. 43. № 22. P. 6887.
  79. 79. Pretorius J.A., Boeyens J.C.A. // J. Inorg. Nucl. Cchem. 1978. V. 40. № 10. P. 1745.
  80. 80. Baruah J.B., Singh W., Karmakar A. // J. Mol. Struct. 2008. V. 892. № 1–3. P. 84.
  81. 81. Neary M.C., Parkin G. // Polyhedron. 2016. V. 116. P. 189.
  82. 82. Edema J.J.H., Hao S., Gambarotta S., Bensimon C. // Inorg. Chem. 1991. V. 30. № 12. P. 2584.
  83. 83. Li L.-M., Jian F.-F., Ren X.-Y. // Acta Crystrallog. E. V. 65. P. m1041.
  84. 84. Çelenligil-Çetin R., Staples R. J., Stavropoulos P. // Inorg. Chem. 2000. V. 39. № 25. P. 5838.
  85. 85. Singh B., Long J. R., Papaefthymiou G.C., Stavropoulos P. // J. Am. Chem. Soc. 1996. V. 118. № 24. P. 5824.
  86. 86. Tapper A.E., Long J.R., Staples R.J., Stavropoulos P. // Angew. Chem. 2000. V. 39. № 13. P. 2343.
  87. 87. Morozov I.V., Karpova E.V., Glazunova T.Yu. et al. // Russ. J. Coord. Chem. 2016. V. 42. P. 647.
  88. 88. Hubner K., Roesky H.W., Noltemeyer M., Bohra R. // Chem. Ber. 1991. V. 124. P. 515.
  89. 89. He X., Chen F., Zhang D. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. № 23. P. 1341.
  90. 90. Sánchez-Féreza F., Bayés L., Font-Bardia M., Pons J. // Inorg. Chim. Acta. 2019. V. 494. P. 112.
  91. 91. Iqbala M., Sirajuddin M., Ali S. et al. // Inorg. Chim. Acta. 2016. V. 440. P. 129.
  92. 92. Iqbal M., Ali S., Tahir M.N. // J. Struct. Chem. 2018. V. 59. P. 1619.
  93. 93. Ghosh D., Dhibar S., Dey A. et al. // ChemSelect. 2020. V. 5. № 1. P. 75.
  94. 94. Han L.-J., Kong Y.-J., Yan T.-J. et al. // Dalton Trans. 2016. V. 45. P. 18566.
  95. 95. Baur A., Bustin K. A., Aguilera E. et al. // Org. Chem. Front. 2017. V. 4. P. 5194.
  96. 96. Eremina J.A., Lider E.V., Sukhikh T.S. et al // Inorg. Chim. Acta. 2020. V. 510. № 119778.
  97. 97. Mushtaq A., Ali S., Nawaz Tahir M., Haider A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1365.
  98. 98. Wang K.-H., Gao E.-J. // Inorg. Chim. Acta. 2018. V. 482. P. 221.
  99. 99. Zhao X., Liang D., Liu S. et al. // Inorg. Chem. 2008. V. 47. № 16. P. 7133.
  100. 100. Zhang H.-R., Gu J.-Z., Kirillova M.V., Kirillov A.M. // Inorg. Chem. Front. 2021. V. 8. P. 4209.
  101. 101. Jiang X., Xia H., Zhu Y.-F. et al. // Z. Anorg. Allg. Chem. 2011. V. 637. № 14–15. P. 2273.
  102. 102. Mehrani A., Morsali A., Ebrahimpour P. // J. Coord. Chem. 2013. V. 66. № 5. P. 856.
  103. 103. Revathi P., Mohan J.S., Balakrishnan T. et al. // Acta Crystallogr. E. 2019. V. 75. P. 134.
  104. 104. Orts-Arroyo M., Castro I., Lloreta F., Martínez-Lillo J. // Dalton Trans. 2020. V. 49. P. 9155.
  105. 105. Lazarou K.N., Chadjistamatis I., Terzis A. et al. // Inorg. Chim. Acta. 2010. V. 363. № 1. P. 107.
  106. 106. Le X.-Y., Zhou X.-H., Yu K.-B., Ji L.-N. // Chin. J. Chem. 2000. V. 18. P. 638.
  107. 107. Lazarou K.N., Chadjistamatis I., Terzis A. // Polyhedron. 2010. V. 29. № 2. P. 833.
  108. 108. Li D.-P., Liang X.-Q., Xu Y. et al. // Chin. J. Struct. Chem. 2013. V. 32. P. 1724.
  109. 109. Tian Y.-P., Zhang X.-J., Wu J.-Y. et al. // New J. Chem. 2002. V. 26. P. 1468.
  110. 110. Ghosh A.K., Ghoshal D., Zangrando E. et al. // Inorg. Chem. 2007. V. 46. № 8. P. 3057.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library