- PII
- 10.31857/S0132344X22600503-1
- DOI
- 10.31857/S0132344X22600503
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 49 / Issue number 4
- Pages
- 229-245
- Abstract
- New pentafluorobenzoate (Рfb) copper complexes with 2,3- and 3,5-lutidine (2,3- and 3,5-Lut, respectively), quinoline (Quin), and 1,10-phenanthroline (Рhen) ([Cu2(MeCN)2(Рfb)4] (I), [Cu(2,3-Lut)2(Pfb)2] (II), [Cu(3,5-Lut)4(Pfb)2] (III), [Cu(Quin)2(Pfb)2] (IV), and [Cu2(Phen)2(Pfb)4] (V)) are synthesized by the newly developed methods and characterized. The unusual heteroanionic pentafluorobenzoate benzoate (Вnz) ionic compound [Cu2(Рhen)2(Рfb)3]+(Рnz)– (VI) is synthesized. It is shown that the four-bridge binuclear metal cage of complex I is not retained in the reactions with various pyridine derivatives. In the case of such α-substituted pyridines as 2,3-lutidine and quinoline, the compositions and structures of the final products of the reactions with copper pentafluorobenzoate are independent of the initial ratio of the reagents and crystallization conditions. It is revealed by the Hirshfeld surface analysis that π···π, C–F···π, C–H···F, and F···F interactions make the major contribution to the stabilization of crystal packings of the synthesized complexes.
- Keywords
- пентафторбензоаты меди гетероанионные комплексы нековалентные взаимодействия поверхность Хиршфельда
- Date of publication
- 01.04.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 10
References
- 1. Zhang Z., Zaworotko M.J. // Chem. Soc. Rev. 2014. V. 43. P. 5444.
- 2. Bradberry S.J., Savyasachi A.J., Martinez-Calvo M., Gunnlaugsson T. // Coord. Chem. Rev. 2014. V. 273–274. P. 226.
- 3. Chen D.-M., Zhang N.-N., Liu C.-S., Du M. // J. Mater. Chem. C. 2017. V. 5. P. 2311.
- 4. Kohnke F.H., Mathias J.P., Fraser Stoddart J. // Angew. Chem. 1989. V. 28. № 8. P. 1103.
- 5. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Polyhedron. 2022. V. 228. Art. 116174.
- 6. Barry D.E., Caffreya D.F., Gunnlaugsson T. // Chem. Soc. Rev. 2016. V. 45. P. 3244.
- 7. Su J., Yuan S., Cheng Y.-X. et al. // Chem. Sci. 2021. V. 12. P. 14254.
- 8. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 7. № 5. P. 830.
- 9. Bondarenko M.A., Novikov A.S., Sokolov M.N., Adonin S.A. // Organics. 2022. V. 10. № 10. P. 151.
- 10. Adonin S.A., Bondarenko M.A., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 289.
- 11. Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. P. 508.
- 12. Zhou W.-L., Chen Y., Lin W., Liu Y. // Chem. Commun. 2021. V. 57 P. 11443.
- 13. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
- 14. Adonin S.A., Novikov A.S., Sokolov M.N., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 302.
- 15. Adonin S.A., Novikov A.S., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 37.
- 16. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. Art. 194.
- 17. Sharma R.P., Saini A., Kumar S. et al. // J. Mol. Struct. 2017. V. 1128. P. 135.
- 18. Shmelev M.A., Voronina Yu.K., Chekurova S. S. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 551.
- 19. Kong Y.-J., Han L.-J., Fan L.-T. et al. // J. Fluor. Chem. 2016. V. 186. P. 40.
- 20. Han L.-J., Kong Y.-J. // Z. Anorg. Allg. Chem. 2014. V. 640. № 10. P. 2007.
- 21. Shmelev M.A., Voronina Yu. K. Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224.
- 22. Malkerova I.P., Kayumova D.B., Belova E.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 10. P. 608.
- 23. Pinto C.B., Dos Santos L.H.R., Rodrigues B.L. // J. A-ppl. Crystallogr. 2020. V. 53. P. 1321.
- 24. Sen S., Saha M.K., Gupta T. et al. // J. Chem. Crystallogr. 1998. V. 28. P. 771.
- 25. Andruh M., Roesky H.W., Noltemeyer M., Schmidt H.-G. // Polyhedron. 1993. V. 12. № 23. P. 2901.
- 26. Harding M.M. // Acta Crystallogr. D. 2000. V. 56. P. 857.
- 27. Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. Art. 15644.
- 28. Li Z., Yuan Y., Zhang Y. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. № 10. P. 647.
- 29. Sanchez-Sala M., Pons J., Álvarez-Larena Á. et al. // ChemistrySelect. 2017. V. 2. № 35. P. 11574.
- 30. Obaleye J.A., Ajibola A.A., Bernardus V.B., Hosten E.C. // J. Mol. Struct. 2020. V. 1203. Art.127435.
- 31. Rajakannu P., Kaleeswaran D., Banerjee S. et al. // Inorg. Chim. Acta. 2019. V. 486. P. 283.
- 32. Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557.
- 33. Larionov S.V., Glinskaya L.A., Klevtsova R.F. et al. // Z. Neorg. Khim. 1991. V. 36. P. 2514.
- 34. Han L.-J., Kong Y.-J., Huang M.-M. // Inorg. Chim. Acta. 2020. V. 514. Art. 120019.
- 35. Hashim I.I., Scattolin T., Tzouras N.V. et al. // Dalton Trans. 2022. V. 51. P. 231.
- 36. Makoto H., Yoshiyuki I., Taku Y. et al. // Bull. Chem. Soc. Jpn. 2009. V. 82. № 10. P. 1277.
- 37. Han L.-J., Kong Y.-J. // Acta Crystallogr. C. 2014. V. 70. № 11. P. 1017.
- 38. Sharma R.P., Saini A., Singh S. et al. // J. Fluor. Chem. 2010. V. 131. № 4. P. 456.
- 39. Ge C., Zhang X., Yu F. et al. // J. Chem. Crystallogr. 2008. V. 38. P. 501.
- 40. Kuznetsova G.N., Nikolaevskii S.A., Yambulatov D.S. et al. // J. Struct. Chem. V. 62. № 2. P. 184.
- 41. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
- 42. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- 43. Spek A.L. // Acta Crystallogr. D. 2009. V. 65. № 2. P. 148.
- 44. Dolomanov O.V., Bourhis L.J., Gildea R. et al. // J. A-ppl. Crystallogr. 2009. V. 42. P. 339.
- 45. Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
- 46. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Cryst. 2021. V. 54. P. 1006.
- 47. Edwards A.J., Mackenzie C.F., Spackman P.R. et al. // Faraday Discuss. 2017. V. 203. P. 93.
- 48. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539.
- 49. Shmelev M.A., Polunin R.A. Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
- 50. Belousov Y.A., Kiskin M.A., Sidoruk A.V. et al. // Aust. J. Chem. 2022. V. 75. № 9. P. 572.
- 51. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
- 52. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
- 53. Bovkunova A.A., Bazhina E., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. P. 12275.
- 54. Pushikhina O.S., Kozlyakova E.S., Karpova E.V., Tafeenko V.A. // Z. Anorg. Allg. Chem. 2021. V. 647. № 22. P. 2023.
- 55. Li Y., Zhang C., Yu J.-W. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 110.
- 56. Ge C., Zhang X., Yin J., Zhang R. // Chin. J. Chem. 2010. V. 28. № 10. P. 2083.
- 57. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // Inorg. Chim. Acta. 2021. V. 515. P. 120050.
- 58. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemSelect. 2020. V. 5. № 28. P. 8475.
- 59. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1544.
- 60. Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. P. 13349.
- 61. Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643.
- 62. Gogoleva N.V., Kuznetsova G.N., Shmelev M.A. et al. // J. Solid State Chem. 2021. V. 294. Art. 121842.
- 63. Wu B., Lu W., Zheng X. // Transition Met. Chem. 2003. V. 28. P. 323.
- 64. Shmelev M.A., Kuznetsova G.N., Dolgushin F.M. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 127.
- 65. Yambulatov D.S., Nikolaevskii S.A., Lutsenko I.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 772.
- 66. Zeng Z., Cai J., Li F. et al. // RSC Adv. 2021. V. 11. P. 40040.
- 67. Sharma P., Dutta D., Gomila R.M. et al. // Polyhedron. 2021. V. 208. Art. 115409.
- 68. Lah N., Giester G., Segedin P., Murn A. et al. // Acta Crystallogr. C. 2001. V. 57. P. 546.
- 69. Davey G., Stephens F.S. // J. Chem. Soc. A. 1971. P. 1917.
- 70. Davey G., Stephens F.S. // J. Chem. Soc. A. 1970. P. 2803.
- 71. Kozlevcar B., Lah N., Zlindra D. et al. // Acta Chim. Slov. 2001. V. 48. P. 363.
- 72. Kozlevcar B., Murn A., Podlipnik K. et al. // Croat. Chem. Acta. 2004. V. 77. P. 613.
- 73. Buijs W., Comba P., Corneli D. et al. // Eur. J. Inorg. Chem. 2001. P. 3143.
- 74. Li L.-M., Guo H.-M., Li Y.-F. // Z. Krist New – Cryst. Struct. 2012. V. 227. P. 257.
- 75. Dickie D.A., Schatte G., Jennings M.C. et al. // Inorg. Chem. 2006. V. 45. № 4. P. 1646.
- 76. Pradilla S.J., Chen H.W., Koknat F.W., Fackler J.P., Jr. // Inorg. Chem. 1979. V. 18. № 12. P. 3519.
- 77. Gajewska M.J., Ching W.-M., Wen Y.-S., Hung C.-H. // Dalton Trans. 2014. V. 43. P. 14726.
- 78. Ghosh S.K., Bharadwaj P.K. // Inorg. Chem. 2004. V. 43. № 22. P. 6887.
- 79. Pretorius J.A., Boeyens J.C.A. // J. Inorg. Nucl. Cchem. 1978. V. 40. № 10. P. 1745.
- 80. Baruah J.B., Singh W., Karmakar A. // J. Mol. Struct. 2008. V. 892. № 1–3. P. 84.
- 81. Neary M.C., Parkin G. // Polyhedron. 2016. V. 116. P. 189.
- 82. Edema J.J.H., Hao S., Gambarotta S., Bensimon C. // Inorg. Chem. 1991. V. 30. № 12. P. 2584.
- 83. Li L.-M., Jian F.-F., Ren X.-Y. // Acta Crystrallog. E. V. 65. P. m1041.
- 84. Çelenligil-Çetin R., Staples R. J., Stavropoulos P. // Inorg. Chem. 2000. V. 39. № 25. P. 5838.
- 85. Singh B., Long J. R., Papaefthymiou G.C., Stavropoulos P. // J. Am. Chem. Soc. 1996. V. 118. № 24. P. 5824.
- 86. Tapper A.E., Long J.R., Staples R.J., Stavropoulos P. // Angew. Chem. 2000. V. 39. № 13. P. 2343.
- 87. Morozov I.V., Karpova E.V., Glazunova T.Yu. et al. // Russ. J. Coord. Chem. 2016. V. 42. P. 647.
- 88. Hubner K., Roesky H.W., Noltemeyer M., Bohra R. // Chem. Ber. 1991. V. 124. P. 515.
- 89. He X., Chen F., Zhang D. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. № 23. P. 1341.
- 90. Sánchez-Féreza F., Bayés L., Font-Bardia M., Pons J. // Inorg. Chim. Acta. 2019. V. 494. P. 112.
- 91. Iqbala M., Sirajuddin M., Ali S. et al. // Inorg. Chim. Acta. 2016. V. 440. P. 129.
- 92. Iqbal M., Ali S., Tahir M.N. // J. Struct. Chem. 2018. V. 59. P. 1619.
- 93. Ghosh D., Dhibar S., Dey A. et al. // ChemSelect. 2020. V. 5. № 1. P. 75.
- 94. Han L.-J., Kong Y.-J., Yan T.-J. et al. // Dalton Trans. 2016. V. 45. P. 18566.
- 95. Baur A., Bustin K. A., Aguilera E. et al. // Org. Chem. Front. 2017. V. 4. P. 5194.
- 96. Eremina J.A., Lider E.V., Sukhikh T.S. et al // Inorg. Chim. Acta. 2020. V. 510. № 119778.
- 97. Mushtaq A., Ali S., Nawaz Tahir M., Haider A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1365.
- 98. Wang K.-H., Gao E.-J. // Inorg. Chim. Acta. 2018. V. 482. P. 221.
- 99. Zhao X., Liang D., Liu S. et al. // Inorg. Chem. 2008. V. 47. № 16. P. 7133.
- 100. Zhang H.-R., Gu J.-Z., Kirillova M.V., Kirillov A.M. // Inorg. Chem. Front. 2021. V. 8. P. 4209.
- 101. Jiang X., Xia H., Zhu Y.-F. et al. // Z. Anorg. Allg. Chem. 2011. V. 637. № 14–15. P. 2273.
- 102. Mehrani A., Morsali A., Ebrahimpour P. // J. Coord. Chem. 2013. V. 66. № 5. P. 856.
- 103. Revathi P., Mohan J.S., Balakrishnan T. et al. // Acta Crystallogr. E. 2019. V. 75. P. 134.
- 104. Orts-Arroyo M., Castro I., Lloreta F., Martínez-Lillo J. // Dalton Trans. 2020. V. 49. P. 9155.
- 105. Lazarou K.N., Chadjistamatis I., Terzis A. et al. // Inorg. Chim. Acta. 2010. V. 363. № 1. P. 107.
- 106. Le X.-Y., Zhou X.-H., Yu K.-B., Ji L.-N. // Chin. J. Chem. 2000. V. 18. P. 638.
- 107. Lazarou K.N., Chadjistamatis I., Terzis A. // Polyhedron. 2010. V. 29. № 2. P. 833.
- 108. Li D.-P., Liang X.-Q., Xu Y. et al. // Chin. J. Struct. Chem. 2013. V. 32. P. 1724.
- 109. Tian Y.-P., Zhang X.-J., Wu J.-Y. et al. // New J. Chem. 2002. V. 26. P. 1468.
- 110. Ghosh A.K., Ghoshal D., Zangrando E. et al. // Inorg. Chem. 2007. V. 46. № 8. P. 3057.