RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Spin Order Transfer from a Parahydrogen Molecule to a Cyanide Ion in the Iridium Complex under the SABRE Conditions

PII
10.31857/S0132344X22600606-1
DOI
10.31857/S0132344X22600606
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 8
Pages
458-465
Abstract
A possibility of generating a high degree of spin polarization of 13C and 15N nuclei in the cyanide ion, which forms the coordination bond with the metal ion, using parahydrogen is demonstrated for the first time for the new iridium carbene complex as an example. The spin–spin interaction constants in the synthesized complex and the structure of the hydride intermediate are determined by an analysis of the 13С NMR spectra detected using broadband and selective heteronuclear decoupling. The cyanide ion is shown to coordinate to the metal ion by the carbon atom in one of two equatorial positions, and two pyridine molecules are arranged in the axial and equatorial positions. The signal amplification factors for 13С and 15N nuclei of the cyanide anion (5665 and –49 555, respectively) are estimated by NMR spectroscopy of the polarized substrate using the SABRE method from an ultralow magnetic field of 0.5 μT. This amplification corresponds to 15.5% polarization of nitrogen nuclei achieved within several seconds at room temperature.
Keywords
спектроскопия ЯМР параводород гиперполяризация комплексы иридия карбеновые лиганды усиление сигнала индуцированная параводородом гиперполяризация ядер
Date of publication
01.08.2023
Year of publication
2023
Number of purchasers
0
Views
12

References

  1. 1. Atkinson K.D., Cowley M.J., Duckett S.B. et al. // Inorg. Chem. 2009. V. 48. P. 663.
  2. 2. Terreno E., Castelli D.D., Viale A. et al. // Chem. Rev. 2010. V. 110. P. 3019.
  3. 3. Bhattacharya P., Ross B., Bünger R. // Exp. Biol. Med. 2009. V. 234. P. 1395.
  4. 4. Carravetta M., Johannessen O.G., Levitt M.H. // Phys. Rev. Lett. 2004. V. 92. P. 153003.
  5. 5. Ardenkjaer-Larsen J.H., Fridlund B., Gram A. // Proc. Natl. Acad. Sci. 2003. V. 100. P. 10158.
  6. 6. Kaptein R., Oosterhoff L.J. // Chem. Phys. Lett. 1969. V. 4. P. 214.
  7. 7. Becker J., Bermuth J., Ebert M. et al. // Nucl. Instrum. Methods Phys. Res. A. 1998. V. 402. P. 327.
  8. 8. Frossati G. // Nucl. Instrum. Methods Phys. Res. A. 1998. V. 402. P. 479.
  9. 9. Bouchiat M.A., Carver T.R., Varnum C.M. // Phys. Rev. Lett. 1960. V. 5. P. 373.
  10. 10. Bowers C.R., Weitekamp D.P. // Phys. Rev. Lett. 1986. V. 57. P. 2645.
  11. 11. Adams R.W., Aguilar J.A., Atkinson K.D. et al. // Science. 2009. V. 323. P. 1708.
  12. 12. Eisenschmid T.C., Kirss R.U., Deutsch P.P. et al. // J. Am. Chem. Soc. 1987. V. 109. P. 8089.
  13. 13. Buntkowsky G., Theiss F., Lins J. et al. // RSC Adv. 2022. V. 12. P. 12477.
  14. 14. Dücker E.B., Kuhn L.T., Münnemann K. et al. // J. Magn. Reson. 2012. V. 214. P. 159.
  15. 15. Wong C.M., Fekete M., Nelson-Forde R. et al. // Catal. Sci. Technol. 2018. V. 8. P. 4925.
  16. 16. Barskiy D.A., Knecht S., Yurkovskaya A.V. et al. // Prog. Nucl. Magn. Reson. Spectrosc. 2019. V. 114. P. 33.
  17. 17. Rayner P.J., Duckett S.B. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6742.
  18. 18. Garaeva V.V., Spiridonov K.A., Nikovskii I. A. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 572. https://doi.org/10.1134/S1070328422080036
  19. 19. Kerr W.J., Reid M., Tuttle T. // ACS Catal. 2015. V. 5. P. 402.
  20. 20. Shen M.-H., Ren X.-T., Pan Y.-P. et al. // Org. Chem. Front. 2018. V. 5. P. 46.
  21. 21. Kiryutin A.S., Sauer G., Hadjiali S. et al // J. Magn. Reson. 2017. V. 285. P. 26.
  22. 22. Hadjiali S., Bergmann M., Kiryutin A. et al // J. Chem. Phys. 2019. V. 151. P. 244201.
  23. 23. Knecht S., Kiryutin A.S., Yurkovskaya A.V. et al. // J. Magn. Reson. 2018. V. 287. P. 10.
  24. 24. Knecht S., Hadjiali S., Barskiy D.A. et al. // J. Phys. Chem. 2019. V. 123. P. 16288.
  25. 25. Limbach H.-H., Ulrich S., Gründemann S. et al. // J. Am. Chem. Soc. 1998. V. 120. P. 7929.
  26. 26. Pravdivtsev A.N., Ivanov K.L., Yurkovskaya A.V. et al. // J. Magn. Reson. 2015. V. 261. P. 73.
  27. 27. Haake M., Natterer J., Bargon J. // J. Am. Chem. Soc. 1996. V. 118. P. 8688.
  28. 28. Kiryutin A.S., Yurkovskaya A.V., Zimmermann H. et al. // Magn. Reson. Chem. 2018. V. 56. P. 651.
  29. 29. Zhukov I.V., Kiryutin A.S., Yurkovskaya A.V. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 12396.
  30. 30. Carlton L., Belciug M.-P. // J. Organomet. Chem. 1989. V. 378. P. 469.
  31. 31. Kiryutin A.S., Yurkovskaya A.V., Ivanov K.L. // Chem. Phys. Chem. 2021. V. 22. P. 1470.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library