RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Trimethylammonium dichloro-hexachlorotellurate(IV): crystal structure and features of non-covalent interactions of Cl···Cl

PII
10.31857/S0132344X23600030-1
DOI
10.31857/S0132344X23600030
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 12
Pages
767-771
Abstract
By the reaction of tellurium(IV) oxide with trimethylammonium chloride in the presence of chlorine gas in concentrated hydrochloric acid, supramolecular dichloro-hexachlorotellurate (Me3NH)2{[TeCl6](Cl2)} (I) was obtained, the structure of which was determined by X-ray diffraction. Based on elemental and X-ray phase analysis data, a conclusion was made about the limited stability of the resulting compound. The features of non-covalent Cl···Cl interactions in the crystal structure of this compound were studied by Raman spectroscopy (Raman).
Keywords
теллур галогенидные комплексы рентгеноструктурный анализ галогенная связь нековалентные взаимодействия
Date of publication
01.12.2023
Year of publication
2023
Number of purchasers
0
Views
13

References

  1. 1. Pelletier J., Caventou J. // Ann Chim Phys. 1819. V. 10. P. 142.
  2. 2. Yushina I., Tarasova N., Kim D. et al. // Crystals. 2019. V. 9. № 10. P. 506.
  3. 3. Bol’shakov O.I., Yushina I.D., Stash A.I. et al. // Struct. Chem. 2020. V. 31. № 5. P. 1729.
  4. 4. Reiss G.J., Leske P.B. // Z. Krist. – New Cryst. Struct. 2014. V. 229. № 4. P. 452.
  5. 5. Reiss G.J. // Z. Krist. – New Cryst. Struct. 2019. V. 234. № 4. P. 737.
  6. 6. Reiss G.J. // Z. Naturforsch. B. 2015. V. 70. № 10. P. 735.
  7. 7. Sonnenberg K., Mann L., Redeker F.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 14. P. 5464.
  8. 8. Haller H., Riedel S. // Z. Anorg. Allg. Chem. 2014. V. 640. № 7. P. 1281.
  9. 9. Savinkina E.V., Golubev D.V., Grigoriev M.S. // J. Coord. Chem. 2019. V. 72. № 2. P. 347.
  10. 10. Shestimerova T.A., Bykov A.V., Kuznetsov A.N. et al. // Z. Anorg. Allg. Chem. 2022. V. 648. № 15.
  11. 11. Shestimerova T.A., Golubev N.A., Bykov M.A. et al. // Molecules. 2021. V. 26. № 18.
  12. 12. Калле П., Беззубов С.И. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1561 (Kalle P., Bezzubov S.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1682). https://doi.org/10.1134/S0036023621110103
  13. 13. Shestimerova T.A., Bykov M.A., Wei Z. et al. // Russ. Chem. Bull. 2019. V. 68. № 8. P. 1520.
  14. 14. Brückner R., Haller H., Ellwanger M., Riedel S. // Chem. – A Eur. J. 2012. V. 18. № 18. P. 5741.
  15. 15. Brückner R., Haller H., Steinhauer S. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 51. P. 15579.
  16. 16. Brückner R., Pröhm P., Wiesner A. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 36. P. 10904.
  17. 17. Sonnenberg K., Pröhm P., Schwarze N. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 29. P. 9136.
  18. 18. Voßnacker P., Keilhack T., Schwarze N. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 11. P. 1034.
  19. 19. Фатеев С.А., Хрусталев В.Н., Симонова А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 945 (Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997). https://doi.org/10.1134/S0036023622070087.
  20. 20. Фатеев С.А., Степанов Н.М., Петров А.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 939 (Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992). https://doi.org/10.1134/S0036023622070075
  21. 21. Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311.
  22. 22. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 4077.
  23. 23. Shestimerova T.A., Mironov A.V., Bykov M.A. et al. // Molecules. 2020. V. 25. № 12.
  24. 24. Shestimerova T.A., Golubev N.A., Yelavik N.A. et al. // Cryst. Growth Des. 2018. V. 18. № 4. P. 2572.
  25. 25. Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711.
  26. 26. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton. Trans. 2020. V. 49. № 2. P. 356.
  27. 27. Eliseeva A.A., Ivanov D.M., Novikov A.S., Kukushkin V.Yu. // CrystEngComm. 2019. V. 21. № 4. P. 616.
  28. 28. Dabranskaya U., Ivanov D.M., Novikov A.S. et al. // Cryst. Growth Des. 2019. V. 19. № 2. P. 1364.
  29. 29. Storck P., Weiss A. // Zeitschrift Naturforsch. B. 1991. V. 46. № 9. P. 1214.
  30. 30. Usoltsev A.N., Adonin S.A., Kolesov B.A. et al. // Chem. – A Eur. J. 2020. V. 26. № 61. P. 13776.
  31. 31. Usoltsev A.N., Korobeynikov N.A., Kolesov B.A. et al. // Inorg. Chem. 2021. V. 60. № 6. P. 4171.
  32. 32. Korobeynikov N.A., Usoltsev A.N., Kolesov B.A. et al. // CrystEngComm. 2022. V. 24. № 17. P. 3150.
  33. 33. Usoltsev A.N., Korobeynikov N.A., Kolesov B.A. et al. // Chem. – A Eur. J. 2021. V. 27. № 36. P. 9292.
  34. 34. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  35. 35. Ben Ghozlen M.H., Bats J.W. // Acta Crystallogr. B. 1982. V. 38. № 4. P. 1308.
  36. 36. Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006.
  37. 37. Mantina M., Chamberlin A.C.,Valero R. et al. // J. Phys. Chem. 2009. V. 113. № 19. P. 5806.
  38. 38. Usoltsev A.N., Adonin S.A., Abramov P.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 27. P. 3264.
  39. 39. Anderson A., Sun T.S. // Chem. Phys. Lett. 1970. V. 6. № 6. P. 611.
  40. 40. Baker L.-J., Rickard C.E.F., Taylor M.J. // Polyhedron. 1995. V. 14. № 3. P. 401.
  41. 41. Hendra P.J., Jovic Z. // J. CHEM. SOC. 1968. V. 209. P. 600.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library