RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Delayed Drug Release Films Based on MIL-100(Fe) Metal-Organic Framework

PII
10.31857/S0132344X24010035-1
DOI
10.31857/S0132344X24010035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 1
Pages
19-25
Abstract
Biocompatible metal-organic framework MIL-100(Fe) was used as a container for a model hydrophobic active pharmaceutical ingredient, ibuprofen, in composite films based on gelatin, pectin, and kappacarrageenan. According to powder X-ray diffraction and scanning electron microscopy data, the metal-organic framework retained the crystal structure and its particles were uniformly distributed throughout the hydrocolloid matrix. Testing of the obtained film materials under simulated biological conditions using chromatography – mass spectrometry analysis showed that they are applicable as a dosage form for slow release of active pharmaceutical ingredients.
Keywords
адресная доставка активные фармацевтические субстанции биосовместимые материалы гидроколлоиды металлорганические координационные полимеры пленки
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
34

References

  1. 1. Abebe A., Akseli I., Sprockel O. et al. // Int. J. Pharm. 2014. V. 461. № 1. P. 549.
  2. 2. Roshan K., Keerthy H. S. // Asian J. Pharm. Res. Dev. 2021. V 9. № 3. P. 66.
  3. 3. Markovic M.D., Panic V. V., Seslija S. I. et al. // Polym. Eng. Sci. 2020. V. 60. № 8. P. 2008.
  4. 4. Mathieu D., Linke J.-C., Wattel F. // Handbook on Hyperbaric Medicine / Еd. Mathieu D. Dordrecht: Springer Netherlands, 2006. P. 401.
  5. 5. Kadajji V.G., Betageri G. V. // Polymers. 2011. V. 3. № 4. P. 1972.
  6. 6. Zhao J., Wei F., Xu W. et al. // Appl. Surf. Sci. 2020. V. 510. P. 145418.
  7. 7. Пак А.М., Захарченко Е. Н., Корлюков А. А. et al. // Коор. химия. 2022. V. 48. № 4. P. 200.
  8. 8. Pak A.M., Zakharchenko E. N., Korlyukov A. A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 195.
  9. 9. Kirchon A., Feng L., Drake H. F. et al. // Chem. Soc. Rev. The Royal Society of Chemistry. 2018. V. 47. № 23. P. 8611.
  10. 10. Chen L., Zhang X., Cheng X. et al. // Nanoscale Adv. RSC. 2020. V. 2. № 7. P. 2628.
  11. 11. Shekhah O., Liu J., Fischer R. A. et al. // Chem. Soc. Rev. The Royal Society of Chemistry. 2011. V. 40. № 2. P. 1081.
  12. 12. Gangu K.K., Maddila S., Mukkamala S. B. et al. // Inorganica Chim. Acta. 2016. V. 446. P. 61.
  13. 13. Quijia C.R., Lima C., Silva C. et al. // J. Drug Deliv. Sci. Technol. 2021. V. 61. P. 102217.
  14. 14. Canioni R., Roch-Marchal C., Sécheresse F. et al. // J. Mater. Chem. 2011. V. 21. № 4. P. 1226.
  15. 15. Zhong G., Liu D., Zhang J. // Cryst. Growth Des. 2018. V. 18. № 12. P. 7730.
  16. 16. Guesh K., Caiuby C. A.D., Mayoral Á. et al. // Cryst. Growth Des. 2017. V. 17. № 4. P. 1806.
  17. 17. Farris S., Schaich K. M., Liu L. et al. // Food Hydrocoll.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library