RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

3-(2-Methylphenyl)-2-selenoxo-2,3-dihydroquinazolin-4(1H)-one and Its Complex with Cd(II): Synthesis and Molecular and Crystal Structures

PII
10.31857/S0132344X24010049-1
DOI
10.31857/S0132344X24010049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 1
Pages
26-40
Abstract
The reaction of methyl anthranilate with 2-methylphenyl-iso-selenocyanate in boiling absolute ethanol affords a new compound: 3-(2-methylphenyl)-2-selenoxo-2,3-dihydroquinazolin-4(1Н)-one (HL). Free ligand HL, which is selone, is preliminarily transformed into the corresponding sodium selenolate [C15H11N2OSeNa] (I), which is then used without isolation in the reaction with cadmium chloride. This reaction leads to the formation of complex [Cd2(μ-L)2(L)2(C2H5OH)2] (II). The structures of the compounds are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2142342 (НL) and 2246014 (II)) and NMR spectroscopy (1Н, 13С, 15N, and 77Se). In the crystal, the molecules of HL form one-dimensional chains due to H…O and H…Se contacts and alternate in the syndiotactic order. Compound II is the centrosymmetric binuclear complex [C64H56Cd2N8O6Se4]. The cadmium atoms in complex II are hexacoordinated by two chelate anionic ligands L. According to the NMR data, in a DMSO-d6 solution free ligand HL has the selone structure, whereas in cadmium complex II this ligand exists in the selenolate form, which is consistent with the XRD data on the crystal structures of the compounds.
Keywords
3-(2-метилфенил)-2-селеноксо-2,3-дигидрохиназолин-4(1Н)-он кристаллическая структура биядерный комплекс кадмия(II) спектроскопия ЯМР 1Н,13С,15N 77Se
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
36

References

  1. 1. Shtefan E.D., Vvedenskii V. Y. // Russ. Chem. Rev. 1996. V. 65. P. 307. https://doi.org/10.1070/ RC1996v065n04ABEH000212
  2. 2. Akkurt M., Ozturk S., Servi S. et al. // Acta Crystallogr. E. 2004. V. 60. P. 1507. https://doi.org/10.1107/S1600536804019099
  3. 3. Buzykin B.I., Mironova E. V., Gubaidullin A. T. et al. // Russ. J. Gen. Chem. 2008. V. 78. № 4. P. 634. https://doi.org/10.1134/S107036320804021X
  4. 4. Аскеров Р.К., Магерамов А. М., Османов В. К. и др. // Журн. структур. химии. 2018. Т. 59. № 7. С. 1717. https://doi.org/10.26902/JSC20180719.
  5. 5. Askerov R.K., Magerramov A. M., Osmanov V. K. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 2. P. 112. https://doi.org/10.1134/S1070328419020039
  6. 6. Askerov R.K., Magerramov A. M., Osmanov V. K. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 668. https://doi.org/10.1134/S1070328419070017
  7. 7. Rizvan K.A., Maharramov A. M., Khalilov A. N. et al. // Acta Crystallogr. E. 2020. P. 1007. https://doi.org/10.1107/S2056989020007033
  8. 8. Osmanov V.K., Chipinski E. V., Askerov R. K. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 1. P. 32. https://doi.org/10.1134/S1070328421010048
  9. 9. Askerov R.K., Osmanov V. K., Kovaleva O. N. // Russ. J. Coord. Chem. 2021. V. 47. № 11. P. 741. https://doi.org/10.1134/S1070328421110014
  10. 10. Osmanov V.K., Chipinsky E. V., Khrustalev V. N. // Molecules. 2022. V. 27. P. 5799. https://doi.org/10.3390/molecules27185799
  11. 11. Song J.-F., Wang J., Li Si-Z. et. al. // J. Mol. Struct. 2017. V. 1129. P. 1.
  12. 12. Hernandez-Arganis M., Moya-Cabrera M., Jancik V. et al. // Inorg. Chim. Acta. 2018. V. 475. P. 83. https://doi.org/10.1016/j.ica.2017.07.062
  13. 13. Hernandez-Arganis M., Toscano R. A., Moya-Cabrera M. et al. // Z. Anorg. Allg. Chem. 2004. V. 630. P. 1627. https://doi.org/10.1002/zaac.200400183
  14. 14. Muhammad I., Andreas M., Neumann B. et al. // Dalton Trans. 2014. V. 43. № 39. P. 14737. https://doi.org/10.1039/C4DT01931H
  15. 15. Li Y., Wang C. Q., Bian H. D. // J. Coord. Chem. 2012. V. 65. № 20. P. 3665.
  16. 16. Ilie A., Rat C. I., Scheutzow S. et al. // Inorg. Chem. 2011. V. 50. P. 2675. https://doi.org/10.1021/ic102595d
  17. 17. Sanina N.A., Kozub G. I., Kondrat’eva T.A. et al. // J. Mol. Struct. 2013. V. 1041. P. 183. https://doi.org/10.1016/j.molstruc.2013.03.021
  18. 18. Bharty M.K., Dani R. K., Kushawaha S. K. et al. // Polyhedron. 2015. V. 88. P. 208. https://doi.org/10.1016/j.poly.2015.05.045
  19. 19. Taheriha M., Ghadermazi M., Amani V. // J. Mol. Struct. 2016. V. 1107. P. 57. https://doi.org/10.1016/j.molstruc.2015.11.012
  20. 20. Askerov R.K., Youness El Bakri, Osmanov V. K. // J. Inorg. Biochem. 2022. V. 231. P. 111791. https://doi.org/10.1016/j.jinorgbio.2022.111791
  21. 21. Askerov R.K., Ashfaq M., Chipinsky E. V. et al. // Results Chem. 2022. V. 4. 100600. https://doi.org/10.1016/j.rechem.2022.100600
  22. 22. Yadav S., Deka R., Singh H. B. // Chem. Lett. 2019. V. 48. P. 65. https://doi.org/10.1246/cl.180748
  23. 23. Yadav S., Singh H. B., Butcher R. J. // Eur. J. Inorg. Chem. 2017. V. 23. P. 2968. https://doi.org/10.1002/ejic.201700218
  24. 24. Karri R., Chalana A., Kumar B. et al. // Chem. Eur. J. 2019. V. 25. № 55. P. 12810. https://doi.org/10.1002/chem.201902578
  25. 25. Isab A.A., Wazeer M. I.M., Fettouhi M. et al. // Poly-hedron. 2006. V. 25. P. 2629. https://doi.org/10.1016/j.poly.2006.03.022
  26. 26. Henderson R., Rothgery E. F., Schroeder H. A. Patent U. S. № 4496559. 1985.
  27. 27. Patent CN. 104447532A. 2015.
  28. 28. Askerov R.K., Magerramov A. M., Matsulevich Z. V. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 320. https://doi.org/10.1134/S1070328419030011
  29. 29. Ninomiya M., Garud D. R., Koketsu M. // Coord. Chem. Rev. 2011. V. 255. P. 296. https://doi.org/10.1016/j.ccr.2011.07.009
  30. 30. Garud D.R., Koketsu M., Ishihara H. et al. // Molecules. 2007. V. 2. P. 504. https://doi.org/10.3390/12030504
  31. 31. Heimgartner H., Zhou Y., Plamen K. et. al. // Phosphorus, Sulfur, and Silicon and the Relat. Elem. 2008. V. 183. P. 840. https://doi.org/10.1080/10426500801898135
  32. 32. Zakrzewski J., Huras B., Kiełczewska A. // Syn thesis. 2016. V. 48. P. 85. https://doi.org/10.1055/s-0035–1560481
  33. 33. CrysAlisPro. Version 1.171.41.106a. Rigaku Oxford Diffraction, 2021.
  34. 34. Sheldrick G. M. Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  35. 35. Бацанов С.С. // Журн. неорган. химии. 1991. Т. 36. Вып. 12. С. 3015.
  36. 36. Christoph J. // Dalton Trans. 2000. P. 3885. https://doi.org/10.1039/B003010O.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library