RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Effect of the Solvent Nature on a Spin Equilibrium in the Solutions of the Phenylboron-Capped Hexa-n-Butylsulfide Cobalt(II) Clathrochelate Stadied by the Paramagnetic NMR Spectroscopy

PII
10.31857/S0132344X24020021-1
DOI
10.31857/S0132344X24020021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 2
Pages
85-91
Abstract
A spin state of the phenylbon-capped hexa-n-butylsulfide cobalt(II) clathrochelate in solutions was studied by paramagnetic NMR spectroscopy. This cage complex is found to undergo the temperature – induced spin crossover in solvents of different nature (acetonitrile, chloroform, dichloromethane, and benzene). The previously developed method for an analysis of paramagnetic shifts in NMR spectra allows to calculate of the thermodynamic parameters (enthalpy and entropy) of a given spin equilibrium in the solutions. In spite of the conformational rigidity of the macrobicyclic tris-α-dioximate molecules, the substantial changes in their electronic structures and spin crossover parameters were observed, being affected by a polarity of the solvent used. This provides an opportunity for the fine tuning of spin switch characteristics by changing this medium parameter.
Keywords
спиновый переход парамагнитный ЯМР клатрохелаты комплексы кобальта(II)
Date of publication
15.02.2024
Year of publication
2024
Number of purchasers
0
Views
32

References

  1. 1. Gamez P., Costa J. S., Quesada M. et al. // Dalton Trans. 2009. № 38. P. 7845.
  2. 2. Kumar K. S., Ruben M. // Angew. Chem. Int. Ed. 2021. V. 60. № 14. P. 7502.
  3. 3. Lefter C., Davesne V., Salmon L. et al. // Magnetochemistry. 2016. V. 2. № 1. P. 18.
  4. 4. Manrique-Juarez M.D., Rat S., Salmon L. et al. // Coord. Chem. Rev. 2016. V. 308. P. 395.
  5. 5. Jeon I.-R., Park J. G., Haney C. R. et al. // Chem. Sci. 2014. V. 5. № 6. C. 2461.
  6. 6. Gentili D., Demitri N., Schäfer B. et al. // J. Mater. Chem. C. 2015. V. 3. № 30. P. 7836.
  7. 7. Tissot A., Kesse X., Giannopoulou S. et al. // Chem. Commun. 2019. V. 55. № 2. P. 194.
  8. 8. Wei R.-J., Tao J., Huang R.-B. et al. // Inorg. Chem. 2011. V. 50. № 17. P. 8553.
  9. 9. Lada Z. G., Andrikopoulos K. S., Mathioudakis G. N. et al. // Magnetochemistry. 2022. V. 8. № 2. P. 16.
  10. 10. Clemente-Juan J.M., Coronado E., Gaita-Ariño A. // Chem. Soc. Rev. 2012. V. 41. № 22. P. 7464.
  11. 11. Bousseksou A., Boukheddaden K., Goiran M. et al. // Phys. Rev. B. 2002. V. 65. № 17. P. 172412.
  12. 12. Gütlich P., Ksenofontov V., Gaspar A. B. // Coord. Chem. Rev. 2005. V. 249. № 17–18. P. 1811.
  13. 13. Ohkoshi S.-i., Hashimoto K. // J. Photochem. Photobiol. 2001. V. 2. № 1. P. 71.
  14. 14. Hosokawa H., Funasako Y., Mochida T. // Chem. Eur. J. 2014. V. 20. № 46. P. 15014.
  15. 15. Halcrow M. A. // Coord. Chem. Rev. 2009. V. 253. № 21–22. P. 2493.
  16. 16. Halcrow M. A. // Crystals. 2016. V. 6. № 5. P. 58.
  17. 17. Krivokapic I., Zerara M., Daku M. L. et al. // Coord. Chem. Rev. 2007. V. 251. № 3–4. P. 364.
  18. 18. Hayami S., Komatsu Y., Shimizu T. et al. // Coord. Chem. Rev. 2011. V. 255. № 17–18. P. 1981.
  19. 19. Voloshin Y. Z., Kostromina N. A., Krämer R. Clathrochelates: Synthesis, Structure and Properties. Elsevier, 2002. 419 p.
  20. 20. Voloshin Y., Belaya I., Krämer R. Cage Metal Complexes: Clathrochelates Revisited. Springer, 2017. 467 p.
  21. 21. Novikov V. V., Pavlov A. A., Belov A. S. et al.// J. Phys. Chem. Lett. 2014. V. 5. № 21. P. 3799–3803.
  22. 22. Voloshin Y. Z., Novikov V. V., Nelyubina Y. V. // RSC Adv. 2015. V. 5. № 89. P. 72621.
  23. 23. Novikov V. V., Pavlov A. A., Nelyubina Y. V. et al. // J. Am. Chem. Soc. 2015. V. 137. № 31. P. 9792.
  24. 24. Novikov V. V., Ananyev I. V., Pavlov A. A. et al. // J. Phys. Chem. Lett. 2014. V. 5. № 3. P. 496.
  25. 25. Pavlov A. A., Nelyubina Y. V., Kats S. V. et al. // J. Phys. Chem. Lett. 2016. V. 7. № 20. P. 4111.
  26. 26. Novikov V. V., Pavlov A. A., Nehrkorn J. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 756. https://doi.org/10.1134/S1070328420110056
  27. 27. Voloshin Y. Z., Varzatskii O. A., Novikov V. V. et al. // Eur. J. Inorg. Chem. 2010. P. 5401.
  28. 28. Pavlov A. A., Denisov G. L., Kiskin M. A. et al // Inorg. Chem. 2017. V. 56. № 24. P. 14759.
  29. 29. Pavlov A. A., Aleshin D., Nikovskiy I. A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 23. P. 2819.
  30. 30. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 1. P. 73.
  31. 31. Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. C. 3865.
  32. 32. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. T. 7. № 18. P. 3297.
  33. 33. Kossmann S., Neese F. // Chem. Phys. Lett. 2009. T. 481. № 4–6. P. 240.
  34. 34. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  35. 35. Rodriguez‐Castañeda F., Haberz P., Leonov A. et al.// Magn Reson Chem. 2006. V. 44. № S1. P. S10.
  36. 36. Pavlov A. A., Novikov V. V., Nikovskiy I. A. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 2. P. 1167.
  37. 37. Pavlov A. A., Nehrkorn J., Zubkevich S. V. et al. // Inorg. Chem. 2020. V. 59. № 15. P. 10746–10755.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library