- PII
- 10.31857/S0132344X24030043-1
- DOI
- 10.31857/S0132344X24030043
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 50 / Issue number 3
- Pages
- 187-199
- Abstract
- The coordination and extraction properties of two related tripodal ligands differed by types of addition of the triazole fragment and linker length in the {2-[(4-Ph-1,2,3-triazol-1-yl)CH2CH2O]C6H4}3P(O) (L1) and {2-[(1-Ph-1,2,3-triazol-4-yl)CH2O]C6H4}3P(O) (L2) are compared. The structures of the complexes [Lа(NO3)3L1] (I) and [Lu(NO3)3L1] (II) are studied in the solid phase (elemental analysis, IR and Raman spectroscopy) and in solutions (IR and multinuclear 1H, 13C, and 31P NMR spectroscopy). A normal coordinate analysis at the TPSS-D4/Def2-SVP level is performed for an isolated molecule of the model complex [La{P(O),N3,N2-L3}(O,O-NO3)3] (L3 = {2-[(4-Me-1,2,3-triazol-1-yl)CH2CH2O]C6H4}3-P(O)). According to the set of spectral and quantum chemical data, ligand L1 exhibits the tridentate P(O),N2,N2 coordination in lanthanide complexes I and II. These are neutral complexes in the solid state and in CD3CN solutions, and the dynamic equilibrium of the neutral and ionic complexes is observed in CDCl3. Unlike ligand L1, ligand L2 exhibits the tetradentate P(O),N3,N3,N3 coordination in the [Ln(NO3)3L2] complexes with the same metals (Ln = La3+, Lu3+) in solutions. The efficiency of extraction of microquantities of f elements from the aqueous phase to 1,2-dichloroethane by compounds L1 and L2 is discussed in comparison with the structures of the complexes of both ligands in solutions.
- Keywords
- комплексы лантанидов триподальные триазолсодержащие лиганды колебательная спектроскопия спектроскопия ЯМР строение в твердом состоянии строение в растворах экстракция
- Date of publication
- 15.03.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 8
References
- 1. Aromí G., Barrios L.A., Roubeau O. et al. // Coord. Chem. Rev. 2011. V. 255. P. 485.
- 2. Schulze B., Schubert U.S. // Chem. Soc. Rev. 2014. V. 43. P. 2522.
- 3. Götzke L., Schaper G., März J. et al. // Coord. Chem. Rev. 2019. V. 386. P. 267.
- 4. Scattergood P., Sinopoli A., Elliott P. // Coord. Chem. Rev. 2017. V. 350. P. 136.
- 5. Huang D., Zhao P., Astruc D. // Coord. Chem. Rev. 2014. V. 272. P. 145.
- 6. Hosseinnejad T., Ebrahimpour-Malmir F., Fattahi B. // RSC Adv. 2018. V. 22. № 8. P. 12232.
- 7. Lauko J., Kouwer P.H.J., Rowan A.E. // J. Heterocycl. Chem. 2017. V. 54. № 3. P. 1677.
- 8. Nößler M., Hunger D., Neuman N.I. et al. // Dalton Trans. 2022. V. 51. P. 10507.
- 9. Urankar D., Pinter B., Pevec A. et al. // Inorg. Chem. 2010. V. 49. P. 4820.
- 10. Guha P.M., Phan H., Kinyon J.S. et al. // Inorg. Chem. 2012. V. 51. P. 3465.
- 11. Kilpin K.J., Gavey E.L., McAdam C.J. et al. // Inorg. Chem. 2011. V. 50. P. 6334.
- 12. Lo W.K.C., Huff G.S., Cubanski J.R. et al. // Inorg. Chem. 2015. V. 54. № 4. P. 1572.
- 13. Saleem F., Rao G.K., Kumar A. et al. // Organometallics. 2013. V. 32. № 13. P. 3595.
- 14. Kudryavtsev I.Y., Bykhovskaya O.V., Matveeva A.G. et al. // Monats. Chem. 2020. V. 151. № 11. P. 1705.
- 15. Matveeva A.G., Bykhovskaya O.V., Pasechnik M.P. et al. // Mendeleev Commun. 2022. V. 32. № 5. P. 588.
- 16. Platt A.W.G. // Coord. Chem. Rev. 2017. V. 340. P. 62.
- 17. Брилева Ю.А., Артемьев А.В., Глинская Л.А. и др. // Журн. структур. химии. 2021. Т. 62. № 2. С. 280 (Bryleva Yu.A., Artem′ev A.V., Glinskaya L.A. et al. // J. Struct. Chem. V. 62. № 2. P. 265). https://doi.org/10.1134/S0022476621020116
- 18. Bryleva Yu.A., Artem′ev A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. P. 13869.
- 19. Bryleva Y.A., Komarov V.Yu., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. P. 10446.
- 20. Матвеева А.Г., Баулина Т.В., Кудрявцев И.Ю. и др. // Журн. общ. химии. 2020. Т. 90. № 12. С. 1939 (Matveeva A.G., Baulina T.V., Kudryavtsev I.Yu. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 12. P. 2338). https://doi.org/10.1134/S107036322012018X
- 21. Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. New York: Elsevier, 2009. P. 743.
- 22. Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. P. e1327.
- 23. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
- 24. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
- 25. Perdew J.P., Ruzsinsky A., Csonka G.I. et al. // Phys. Rev. Lett. 2009. V. 103. P. 026403.
- 26. Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. V. 147. P. 034112.
- 27. Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
- 28. Neese F., Wennmohs F., Hansen A. et al. // Chem. Phys. 2009. V. 356. № 1—3. P. 98.
- 29. Dutta A.K., Neese F., Izsak R. // J. Chem. Phys. 2016. V. 144. № 3. P. 034102.
- 30. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057.
- 31. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Hoboken: J. Wiley & Sons Inc, 2009. 432 p.
- 32. Matveeva A.G., Vologzhanina A.V., Pasechnik M.P. et al. // Polyhedron. 2022. V. 215. P. 115680.
- 33. Mohammadsaleh F., Jahromi M.D., Hajipour A.R. et al. // RSC Adv. 2021. V. 11. № 34. P. 20812.
- 34. Matveeva A.G., Peregudov A.S., Matrosov E.I. et al. // Inorg. Chim. Acta. 2009 V. 362. P. 3607.
- 35. Davis M.F., Levason W., Ratnani R. et al. // New J. Chem. 2006. V. 30. P. 782.
- 36. Matveeva A.G., Kudryavtsev I.Yu., Pasechnik M.P. et al. // Polyhedron. 2018. V. 142. P. 71.
- 37. Kiefer C., Wagner A.T., Beele B.B. et al. // Inorg. Chem. 2015. V. 54. P. 7301.
- 38. Matveeva A.G., Vologzhanina A.V., Goryunov E.I. et al. // Dalton Trans. 2016. V. 45. P. 5162.
- 39. Bremer A., Ruff C.M., Girnt D. et al. // Inorg. Chem. 2012. V. 51. P. 5199.
- 40. Matveeva A.G., Artyushin O.I., Pasechnik M.P. et al. // Polyhedron. 2021. V. 198. P. 115085.
- 41. Beele B.B., Rüdiger E., Schwörer F. et al. // Dalton Trans. 2013. V. 42. P. 12139.