RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Effect of Substituents in the Pentafluorobenzoate and 2,3,4,5- and 2,3,5,6-Tetrafluorobenzoate Anions on the Structure of Cadmium Complexes

PII
10.31857/S0132344X24040022-1
DOI
10.31857/S0132344X24040022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 4
Pages
231-250
Abstract
New cadmium 2,3,4,5-tetrafluorobenzoate (6HTfb) and 2,3,5,6-tetrafluorobenzoate (4Htfb) complexes, [Cd(6HTfb)(H2O)3]n·(6HTfb)·2nH2O (I), [Cd3(Phen)2(6HTfb)6] (II, Phen = 1,10-phenanthroline), [Cd2(Phen)2(4Htfb)4]n·2nH2O (III), and [Cd(Phen)2(4Htfb)2] (IV), were synthesized. Analysis of the obtained results and published data demonstrated that a decrease in the number of fluorine substituents is unfavorable for the formation of coordination polymers comprising stacked alternating fluorinated and nonfluorinated aromatic moieties. In the case of 2,4,5-trifluorobenzoate complex, a typical trivial structure of the binuclear cadmium complex with ligand-shielded metal core is formed. The synthesis of 2,3,4,5- and 2,3,5,6-tetrafluorobenzoate complexes produced an intermediate situation and demonstrated that the structure of complex formation products is affected by not only the number, but also the positions of fluorine substituents. Using quantum chemical calculations, it was shown that the formation of coordination polymers requires a molecular precursor with a Chinese lantern structure stable in solutions, while the formation of unusual flattened binuclear complexes with additionally coordinated water molecules requires doubly bridged binuclear complexes able to switch to a conformation with exposed coordinatively unsaturated metal centers.
Keywords
кадмий тетрафторбензоаты пентафторбензоаты координационные полимеры нековалентные взаимодействия квантовохимические расчеты
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
12

References

  1. 1. Saxena P., Thirupathi N. // Polyhedron. 2015. V. 98. № 1. P. 238.
  2. 2. Pryma O.V., Petrusenko S.R., Kokozay V.N. et al. // Inorg. Chem. Commun. 2003. V. 6. № 7. P. 896.
  3. 3. Zhao Q.-H., Ma Y.-P., Wang Q.-H., Fang R.-B. // Chin. J. Struct. Chem. 2002. V. 21. P. 513.
  4. 4. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. № 5. P. 830 (Шмелев М.А., Кузнецова Г.Н., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2021. Т. 70. № 5. С. 830).
  5. 5. Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A et. al. // Crystals. 2022. V. 12. P. 508.
  6. 6. Yang Y.-Q., Li C.-H., Li W., Kuang Y.-F. // Chin. J. Inorg. Chem. 2009. V. 25. P. 1120.
  7. 7. Nie J.-J., Pan T.-T., Su J.-R., Xu D.-J. // Acta Crystallogr. E. 2010. V. 66. P. m760.
  8. 8. Gogoleva N.V., Shmelev M.A., Evstifeev I.S. et al. // Russ. Chem. Bull. 2016. V. 65. P. 181 (Гоголева Н.В., Шмелев М.А., Евстифеев И.С. и др. // Изв. АН. Сер. хим. 2016. V. 65. № 1. P. 171).
  9. 9. Li W., Li C.-H., Yang Y.-Q., Li Y.-L. // Chin. J. Inorg. Chem. 2010. V. 26. P. 166.
  10. 10. Кузнецова Г.Н., Ямбулатов Д.С., Кискин М.А и др. // Коорд. химия. 2020. V. 46. № 8. P. 493 (Kuznetsova G.N., Yambulatov D.S., Kiskin M.A. et. al. // Russ. J. Coord. Chem. 2020. V. 46. P. 553). https://doi.org/10.1134/S1070328420080047
  11. 11. Itoh T., Kondo M., Kanaike M., Masaoka S. // CrystEngComm. 2013. V. 15. P. 6122.
  12. 12. Cockcroft J.K., Rosu-Finsen A., Fitch A.N., Willi-ams J.H. // CrystEngComm. 2018. V. 20. P. 6677.
  13. 13. Lee G.Y., Hu E., Rheingold A.L., Houk K.N., Sletten E.M. // J. Org. Chem. 2021. V. 86. P. 8425.
  14. 14. Шмелев М.А., Кузнецова Г.Н., Долгушин Ф.М. и др. // Коорд. химия. 2021. Т. 47. № 2. С. 92 (Shmelev M.A., Kuznetsova G.N., Dolgushin F.M et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 127). https://doi.org/10.1134/S1070328421020068
  15. 15. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. P. 194.
  16. 16. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
  17. 17. Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. P. 678.
  18. 18. Li J.-X., Du Z.-X. // J. Cluster Sci. 2020. V. 31. P. 507.
  19. 19. Wu W.P., Wang J., Lu L., Xie B., Wu Y., Kumar A. // Russ. J. Coord. Chem. 2016. V. 42. P. 71.
  20. 20. Corradi A.B., Menabue L., Saladini M., Sola M., Battaglia L.P. // Dalton Trans. 1992. P. 2623.
  21. 21. Nikolaevskii S.A., Evstifeev I.S., Kiskin M.A et al. // Polyhedron. 2018. V. 152. P. 61.
  22. 22. Шмелев М.А., Гоголева Н.В., Долгушин Ф.М. и др. // Коорд. химия. 2020. Т. 46. № 7. С. 437 (Shmelev M.A., Gogoleva N.V., Dolgushin F.M. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 7. P. 493). https://doi.org/10.1134/S1070328420070076
  23. 23. Yang Y.-Q., Li C.-H., Li W., Kuang Y.-F. // Chin. J. Inorg. Chem. 2010. V. 26. P. 1890.
  24. 24. Zha M.-Q., Li X., Bing Y. // Acta Crystallogr. E. 2010. V. 67. P. m8.
  25. 25. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  26. 26. Sheldrick G.M. // SADABS. Madison (WI, USA): BrukerAXSInc., 1997.
  27. 27. Sheldrick G.M. // ActaCrystallogr. C. 2015. V. 71. P. 3.
  28. 28. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. V. 42. P. 339.
  29. 29. Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
  30. 30. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 16. Revision A. 03, Wallingford: Gaussian, 2016.
  31. 31. Kohn W., Sham L.J. // Phys. Rev. A. 1965. V. 140. P. 1133.
  32. 32. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
  33. 33. Nikolaevskii S.A., Kiskin M.A., Starikova A.A. et al. // Russ. Chem. Bull. 2016. V. 65. P. 2812.
  34. 34. Николаевский С.А., Кискин М.А., Стариков А.Г. и др. // Коорд. химия. 2019. Т. 45. № 4. С. 219 (Nikolaevskii S.A., Kiskin M.A., Starikov A.G. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 4. P. 273). https://doi.org/10.1134/S1070328419040067
  35. 35. Гоголева Н.В., Шмелев М.А., Кискин М.А. и др. // Коорд. химия. 2021. Т. 47. № 4. С. 226 (Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 4. P. 261). https://doi.org/10.1134/S1070328421040035
  36. 36. Grimme S., Ehrlich S., Goerigk L.L. // J. Comp. Chem. 2011. V. 32. P. 1456.
  37. 37. Yanai T., Tew D., Handy N. // Chem. Phys. Lett. 2004. V. 393. P. 51.
  38. 38. Chemcraft – Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8. Build 682. https://www.chemcraftprog.com
  39. 39. Ge C.-H., Zhang R., Fan P., Zhang X.-D. et al. // Chin. Chem. Lett. 2013. V. 24. P. 73.
  40. 40. Lou Q.-Z. // Z. Kristallogr.-New Cryst. Struct. 2007. V. 222. P. 105.
  41. 41. Шмелев М.А., Гоголева Н.В., Кузнецова Г.Н. и др. // Коорд. химия. 2020. Т. 46. № 8. С. 497 (Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557). https://doi.org/10.31857/S0132344X2008006X
  42. 42. Dankhar S.S., Nagaraja C.M. // J.Solid State Chem. 2020. V. 290. P. 121560.
  43. 43. Wang X.L., Zhang J.X., Liu G.C. et al. // Russ. J. Coord. Chem. 2010. V. 36. P. 662.
  44. 44. Bu X.-H., Tong M.-L., Li J.-R. et al. // Cryst. Eng. Comm. 2005. V. 7. P. 411.
  45. 45. Clegg W., Little I.R., Straughan B.P. // Inorg. Chem. 1988. V. 27. P. 1916.
  46. 46. Clegg W., Harbron D.R., Straughan B.P. // Acta Crystallogr. C. 1991. V. 47. P. 267.
  47. 47. Escobedo-Martinez C., Lozada M.C., Gnecco D. // J. Chem. Cryst. 2012. V. 42. P. 794.
  48. 48. Pramanik A., Fronczek F.R., Venkatraman R., Hossain M.A. // Acta Crystallogr. E. 2013. V. 69. P. m643.
  49. 49. Necefoglu H., Clegg W., Scott A.J. // Acta Crystallogr. E. 2002. V. 58. P. m123.
  50. 50. Jin Z.-N., Zhang B.-S. // Z. Kristallogr. – New Cryst. Struct. 2018. V. 233. P. 179.
  51. 51. Carballo R., Covelo B., Fernandez-Hermida N. et al. // J. Chem. Cryst. 2011. V. 41. P. 1949.
  52. 52. Tunsrichon S., Sukpattanacharoen C., Escudero D. et al. // Inorg. Chem. 2020. V. 59. P. 6176.
  53. 53. Carballo R., Covelo B., Garcia-Martinez E. et al. // Appl. Organomet. Chem. 2004. V. 18. P. 201.
  54. 54. Sen S., Saha M.K., Kundu P. et al. // Inorg. Chim. Acta. 1999. V. 288. P. 118.
  55. 55. Roy S., Bauza A., Frontera A. et al. // CrystEngComm. 2015. V. 17. P. 3912.
  56. 56. Bai H., Gao H., Hu M. // Adv. Mater. Res. 2014. V. 997. P. 140.
  57. 57. Li W., Li C.-H., Yang Y.-Q., Li D.-P. // Chin. J. Inorg. Chem. 2008. V. 24. P. 2060.
  58. 58. Li W., Li C.-H., Yang Y.-Q. et al. // Chin. J. Inorg. Chem. 2007. V. 23. P. 2013.
  59. 59. Li W.-W., Bing Y., Zha M.-Q. et al. // Acta Crystallogr. E. 2011. V. 67. P. m1464.
  60. 60. Bing Y., Li X., Zha M.-Q., Wang D.-J. // Nano-Met. Chem. 2011. V. 41. P. 798.
  61. 61. Zha M.-Q., Li X., Bing Y. // J. Coord. Chem. 2011. V. 64. P. 473.
  62. 62. Pruchnik F.P., Dawid U., Kochel A. // Polyhedron. 2006. V. 25. P. 3647.
  63. 63. Liu C.-S., Sanudo E.C., Yan L.-F. et al. // Transition Met. Chem. 2009. V. 34. P. 51.
  64. 64. Song W.-D., Yan J.-B., Hao X.-M. // Acta Crystallogr. E. 2008. V. 64. P. m919.
  65. 65. Liu G.-C., Qu Y., Wang X.-L., Zhang J.-W. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. P. 1696.
  66. 66. Feng S. // Acta Crystallogr. E. 2008. V. 64. P. m817.
  67. 67. Uvarova M.A., Kushan E.V., Andreev M.V. et al. // Russ. J. Inorg. Chem. 2012. V. 57. P. 1314.
  68. 68. Gomez V., Corbella M. // Eur. J. Inorg. Chem. 2009. P. 4471.
  69. 69. Kruszynski R., Malinowska A., Czakis-Sulikowska D., Lamparska A. // J. Coord. Chem. 2009. V. 62. P. 911.
  70. 70. Shao C.-Y., Song S., Song M. et al. // Chin. Chem. Res. 2011. V. 22. P. 29.
  71. 71. Deng Z.-P., Gao S., Huo L.-H., Zhao H. // Acta Crystallogr. E. 2007. V. 63. P. m2694.
  72. 72. Li W., Li C.-h., Yang Y.-Q. et al. // Chin. J. Inorg. Chem. 2008. V. 24. P. 1360.
  73. 73. Yang Y.-Q., Li C.-H., Li W. et al. // Chin. J .Struct. Chem. 2006. V. 25. P. 1409.
  74. 74. Tabrizi L., McArdle P., Ektefan M., Chiniforoshan H. // Inorg. Chim. Acta. 2016. V. 439. P. 138.
  75. 75. Ge C., Zhang X., Yin J., Zhang R. // Chin. J. Chem. 2010. V. 28. P. 2083.
  76. 76. Torres J.F., Bello-Vieda N.J., Macias M.A et al. // Acta Crystallogr. B. 2020. V. 76. P. 166.
  77. 77. Baur A., Bustin K.A., Aguilera E. et al. // Org. Chem. Front. 2017. V. 4. P. 519.
  78. 78. Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1198. (Гоголева Н.В., Шмелев М.А., Кискин М.А. и др. // Изв. АН. Сер. хим. 2016. Т. 5. С. 1198).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library