- PII
- 10.31857/S0132344X24040022-1
- DOI
- 10.31857/S0132344X24040022
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 50 / Issue number 4
- Pages
- 231-250
- Abstract
- New cadmium 2,3,4,5-tetrafluorobenzoate (6HTfb) and 2,3,5,6-tetrafluorobenzoate (4Htfb) complexes, [Cd(6HTfb)(H2O)3]n·(6HTfb)·2nH2O (I), [Cd3(Phen)2(6HTfb)6] (II, Phen = 1,10-phenanthroline), [Cd2(Phen)2(4Htfb)4]n·2nH2O (III), and [Cd(Phen)2(4Htfb)2] (IV), were synthesized. Analysis of the obtained results and published data demonstrated that a decrease in the number of fluorine substituents is unfavorable for the formation of coordination polymers comprising stacked alternating fluorinated and nonfluorinated aromatic moieties. In the case of 2,4,5-trifluorobenzoate complex, a typical trivial structure of the binuclear cadmium complex with ligand-shielded metal core is formed. The synthesis of 2,3,4,5- and 2,3,5,6-tetrafluorobenzoate complexes produced an intermediate situation and demonstrated that the structure of complex formation products is affected by not only the number, but also the positions of fluorine substituents. Using quantum chemical calculations, it was shown that the formation of coordination polymers requires a molecular precursor with a Chinese lantern structure stable in solutions, while the formation of unusual flattened binuclear complexes with additionally coordinated water molecules requires doubly bridged binuclear complexes able to switch to a conformation with exposed coordinatively unsaturated metal centers.
- Keywords
- кадмий тетрафторбензоаты пентафторбензоаты координационные полимеры нековалентные взаимодействия квантовохимические расчеты
- Date of publication
- 15.04.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 12
References
- 1. Saxena P., Thirupathi N. // Polyhedron. 2015. V. 98. № 1. P. 238.
- 2. Pryma O.V., Petrusenko S.R., Kokozay V.N. et al. // Inorg. Chem. Commun. 2003. V. 6. № 7. P. 896.
- 3. Zhao Q.-H., Ma Y.-P., Wang Q.-H., Fang R.-B. // Chin. J. Struct. Chem. 2002. V. 21. P. 513.
- 4. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. № 5. P. 830 (Шмелев М.А., Кузнецова Г.Н., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2021. Т. 70. № 5. С. 830).
- 5. Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A et. al. // Crystals. 2022. V. 12. P. 508.
- 6. Yang Y.-Q., Li C.-H., Li W., Kuang Y.-F. // Chin. J. Inorg. Chem. 2009. V. 25. P. 1120.
- 7. Nie J.-J., Pan T.-T., Su J.-R., Xu D.-J. // Acta Crystallogr. E. 2010. V. 66. P. m760.
- 8. Gogoleva N.V., Shmelev M.A., Evstifeev I.S. et al. // Russ. Chem. Bull. 2016. V. 65. P. 181 (Гоголева Н.В., Шмелев М.А., Евстифеев И.С. и др. // Изв. АН. Сер. хим. 2016. V. 65. № 1. P. 171).
- 9. Li W., Li C.-H., Yang Y.-Q., Li Y.-L. // Chin. J. Inorg. Chem. 2010. V. 26. P. 166.
- 10. Кузнецова Г.Н., Ямбулатов Д.С., Кискин М.А и др. // Коорд. химия. 2020. V. 46. № 8. P. 493 (Kuznetsova G.N., Yambulatov D.S., Kiskin M.A. et. al. // Russ. J. Coord. Chem. 2020. V. 46. P. 553). https://doi.org/10.1134/S1070328420080047
- 11. Itoh T., Kondo M., Kanaike M., Masaoka S. // CrystEngComm. 2013. V. 15. P. 6122.
- 12. Cockcroft J.K., Rosu-Finsen A., Fitch A.N., Willi-ams J.H. // CrystEngComm. 2018. V. 20. P. 6677.
- 13. Lee G.Y., Hu E., Rheingold A.L., Houk K.N., Sletten E.M. // J. Org. Chem. 2021. V. 86. P. 8425.
- 14. Шмелев М.А., Кузнецова Г.Н., Долгушин Ф.М. и др. // Коорд. химия. 2021. Т. 47. № 2. С. 92 (Shmelev M.A., Kuznetsova G.N., Dolgushin F.M et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 127). https://doi.org/10.1134/S1070328421020068
- 15. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. P. 194.
- 16. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
- 17. Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. P. 678.
- 18. Li J.-X., Du Z.-X. // J. Cluster Sci. 2020. V. 31. P. 507.
- 19. Wu W.P., Wang J., Lu L., Xie B., Wu Y., Kumar A. // Russ. J. Coord. Chem. 2016. V. 42. P. 71.
- 20. Corradi A.B., Menabue L., Saladini M., Sola M., Battaglia L.P. // Dalton Trans. 1992. P. 2623.
- 21. Nikolaevskii S.A., Evstifeev I.S., Kiskin M.A et al. // Polyhedron. 2018. V. 152. P. 61.
- 22. Шмелев М.А., Гоголева Н.В., Долгушин Ф.М. и др. // Коорд. химия. 2020. Т. 46. № 7. С. 437 (Shmelev M.A., Gogoleva N.V., Dolgushin F.M. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 7. P. 493). https://doi.org/10.1134/S1070328420070076
- 23. Yang Y.-Q., Li C.-H., Li W., Kuang Y.-F. // Chin. J. Inorg. Chem. 2010. V. 26. P. 1890.
- 24. Zha M.-Q., Li X., Bing Y. // Acta Crystallogr. E. 2010. V. 67. P. m8.
- 25. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
- 26. Sheldrick G.M. // SADABS. Madison (WI, USA): BrukerAXSInc., 1997.
- 27. Sheldrick G.M. // ActaCrystallogr. C. 2015. V. 71. P. 3.
- 28. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. V. 42. P. 339.
- 29. Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
- 30. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 16. Revision A. 03, Wallingford: Gaussian, 2016.
- 31. Kohn W., Sham L.J. // Phys. Rev. A. 1965. V. 140. P. 1133.
- 32. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 33. Nikolaevskii S.A., Kiskin M.A., Starikova A.A. et al. // Russ. Chem. Bull. 2016. V. 65. P. 2812.
- 34. Николаевский С.А., Кискин М.А., Стариков А.Г. и др. // Коорд. химия. 2019. Т. 45. № 4. С. 219 (Nikolaevskii S.A., Kiskin M.A., Starikov A.G. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 4. P. 273). https://doi.org/10.1134/S1070328419040067
- 35. Гоголева Н.В., Шмелев М.А., Кискин М.А. и др. // Коорд. химия. 2021. Т. 47. № 4. С. 226 (Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 4. P. 261). https://doi.org/10.1134/S1070328421040035
- 36. Grimme S., Ehrlich S., Goerigk L.L. // J. Comp. Chem. 2011. V. 32. P. 1456.
- 37. Yanai T., Tew D., Handy N. // Chem. Phys. Lett. 2004. V. 393. P. 51.
- 38. Chemcraft – Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8. Build 682. https://www.chemcraftprog.com
- 39. Ge C.-H., Zhang R., Fan P., Zhang X.-D. et al. // Chin. Chem. Lett. 2013. V. 24. P. 73.
- 40. Lou Q.-Z. // Z. Kristallogr.-New Cryst. Struct. 2007. V. 222. P. 105.
- 41. Шмелев М.А., Гоголева Н.В., Кузнецова Г.Н. и др. // Коорд. химия. 2020. Т. 46. № 8. С. 497 (Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557). https://doi.org/10.31857/S0132344X2008006X
- 42. Dankhar S.S., Nagaraja C.M. // J.Solid State Chem. 2020. V. 290. P. 121560.
- 43. Wang X.L., Zhang J.X., Liu G.C. et al. // Russ. J. Coord. Chem. 2010. V. 36. P. 662.
- 44. Bu X.-H., Tong M.-L., Li J.-R. et al. // Cryst. Eng. Comm. 2005. V. 7. P. 411.
- 45. Clegg W., Little I.R., Straughan B.P. // Inorg. Chem. 1988. V. 27. P. 1916.
- 46. Clegg W., Harbron D.R., Straughan B.P. // Acta Crystallogr. C. 1991. V. 47. P. 267.
- 47. Escobedo-Martinez C., Lozada M.C., Gnecco D. // J. Chem. Cryst. 2012. V. 42. P. 794.
- 48. Pramanik A., Fronczek F.R., Venkatraman R., Hossain M.A. // Acta Crystallogr. E. 2013. V. 69. P. m643.
- 49. Necefoglu H., Clegg W., Scott A.J. // Acta Crystallogr. E. 2002. V. 58. P. m123.
- 50. Jin Z.-N., Zhang B.-S. // Z. Kristallogr. – New Cryst. Struct. 2018. V. 233. P. 179.
- 51. Carballo R., Covelo B., Fernandez-Hermida N. et al. // J. Chem. Cryst. 2011. V. 41. P. 1949.
- 52. Tunsrichon S., Sukpattanacharoen C., Escudero D. et al. // Inorg. Chem. 2020. V. 59. P. 6176.
- 53. Carballo R., Covelo B., Garcia-Martinez E. et al. // Appl. Organomet. Chem. 2004. V. 18. P. 201.
- 54. Sen S., Saha M.K., Kundu P. et al. // Inorg. Chim. Acta. 1999. V. 288. P. 118.
- 55. Roy S., Bauza A., Frontera A. et al. // CrystEngComm. 2015. V. 17. P. 3912.
- 56. Bai H., Gao H., Hu M. // Adv. Mater. Res. 2014. V. 997. P. 140.
- 57. Li W., Li C.-H., Yang Y.-Q., Li D.-P. // Chin. J. Inorg. Chem. 2008. V. 24. P. 2060.
- 58. Li W., Li C.-H., Yang Y.-Q. et al. // Chin. J. Inorg. Chem. 2007. V. 23. P. 2013.
- 59. Li W.-W., Bing Y., Zha M.-Q. et al. // Acta Crystallogr. E. 2011. V. 67. P. m1464.
- 60. Bing Y., Li X., Zha M.-Q., Wang D.-J. // Nano-Met. Chem. 2011. V. 41. P. 798.
- 61. Zha M.-Q., Li X., Bing Y. // J. Coord. Chem. 2011. V. 64. P. 473.
- 62. Pruchnik F.P., Dawid U., Kochel A. // Polyhedron. 2006. V. 25. P. 3647.
- 63. Liu C.-S., Sanudo E.C., Yan L.-F. et al. // Transition Met. Chem. 2009. V. 34. P. 51.
- 64. Song W.-D., Yan J.-B., Hao X.-M. // Acta Crystallogr. E. 2008. V. 64. P. m919.
- 65. Liu G.-C., Qu Y., Wang X.-L., Zhang J.-W. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. P. 1696.
- 66. Feng S. // Acta Crystallogr. E. 2008. V. 64. P. m817.
- 67. Uvarova M.A., Kushan E.V., Andreev M.V. et al. // Russ. J. Inorg. Chem. 2012. V. 57. P. 1314.
- 68. Gomez V., Corbella M. // Eur. J. Inorg. Chem. 2009. P. 4471.
- 69. Kruszynski R., Malinowska A., Czakis-Sulikowska D., Lamparska A. // J. Coord. Chem. 2009. V. 62. P. 911.
- 70. Shao C.-Y., Song S., Song M. et al. // Chin. Chem. Res. 2011. V. 22. P. 29.
- 71. Deng Z.-P., Gao S., Huo L.-H., Zhao H. // Acta Crystallogr. E. 2007. V. 63. P. m2694.
- 72. Li W., Li C.-h., Yang Y.-Q. et al. // Chin. J. Inorg. Chem. 2008. V. 24. P. 1360.
- 73. Yang Y.-Q., Li C.-H., Li W. et al. // Chin. J .Struct. Chem. 2006. V. 25. P. 1409.
- 74. Tabrizi L., McArdle P., Ektefan M., Chiniforoshan H. // Inorg. Chim. Acta. 2016. V. 439. P. 138.
- 75. Ge C., Zhang X., Yin J., Zhang R. // Chin. J. Chem. 2010. V. 28. P. 2083.
- 76. Torres J.F., Bello-Vieda N.J., Macias M.A et al. // Acta Crystallogr. B. 2020. V. 76. P. 166.
- 77. Baur A., Bustin K.A., Aguilera E. et al. // Org. Chem. Front. 2017. V. 4. P. 519.
- 78. Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1198. (Гоголева Н.В., Шмелев М.А., Кискин М.А. и др. // Изв. АН. Сер. хим. 2016. Т. 5. С. 1198).