- PII
- 10.31857/S0132344X24040063-1
- DOI
- 10.31857/S0132344X24040063
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 50 / Issue number 4
- Pages
- 278-284
- Abstract
- The reactions of equimolar amounts of alkyltriphenylphosphonium bromide with arenesulfonic acids in an aqueous-acetone solution afford alkyltriphenylphosphonium arenesulfonates [Ph3PCH2ОMe][OSO2C6H3(OH-4)(COOH-3)] (I), [Ph3PCH2СN][OSO2C6H4(COOH)-2] (II), [Ph3PCH2C(O)Me][OSO2С6H4(COOH-2] (III), and [Ph3PCH2C(O)Me][OSO2Naft-1] (IV). According to the X-ray diffraction (XRD) data, the crystals of compounds I−IV have ionic structures with tetrahedral alkyltriphenylphosphonium cations (P−С 1.7820(19)−1.8330(20) A, CPC 05.37(10)°−112.09(12)°) and arenesulfonate anions. The crystal of compound I contains hydrogen bonds (S=O∙∙∙H−OC(O) 1.87 A) linking the arenesulfonate anions into chains. The structural organization of the crystals of compounds I−IV is mainly formed due to numerous weak hydrogen bonds between the cations and anions, for instance, S=O∙∙∙H−Car (2.29−2.70 A), C=O∙∙∙H–C (2.48 and 2.59 A), and N∙∙∙H–C (2.62−2.68 A).
- Keywords
- аренсульфонат алкилтрифенилфосфония синтез строение рентгеноструктурные исследования
- Date of publication
- 15.04.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 36
References
- 1. The Chemistry of Organophosphorus Compounds / Ed. Hartley F.R. John Wiley & Sons, Ltd. 1983. V. 3. 458 p.
- 2. Moritz R., Wagner M., Schollmeyer D. et al. // Chem. Eur. J. 2015. V. 21. P. 9119. https://doi.org/10.1002/chem.201406370
- 3. Werner T. // Adv. Synth. Catal. 2009. V. 351. P. 1469. https://doi.org/10.1002/adsc.200900211
- 4. Cordovilla C., Bartolome C., Martinez-Ilarduya J.M. et al. // ACS Catal. 2015. V. 5. P. 3040. https://doi.org/10.1021/acscatal.5b00448
- 5. Chong C.C., Hirao H., Kinjo R. // Angew. Chem. Int. Ed. 2015. V. 127. P. 192. https://doi.org/10.1002/ange.201408760
- 6. Luiz J.F., Spikes H. // Tribology Lett. 2020. V. 68. P. 75. https://doi.org/10.1007/s11249-020-01315-8
- 7. Zhu Ch.-L., Zhang F.-G., Meng W. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 5869. https://doi.org/10.1002/anie.201100283
- 8. Cassity C.G., Mirjafari A., Mobarrez N. et al. // Chem. Commun. 2013. V. 49. № 69. P. 7590. https://doi.org/10.1039/c3cc44118k
- 9. Canac Y., Duhayon C., Chauvin R. // Angew. Chem. Int. Ed. 2007. V. 46. P. 6313. https://doi.org/10.1002/anie.200701490
- 10. Milenkovic M., Warzajtis B., Rychlewska U. et al. // Molecules. 2012. V. 17. № 3. P. 2567. https://doi.org/10.3390/molecules17032567
- 11. Pavlova J.A., Khairullina Z.Z., Tereshchenkov A.G. et al. // Antibiotics. 2021. V. 10. P. 489. https://doi.org/10.3390/antibiotics10050489
- 12. Tsepaeva O.V., Salikhova T.I., Grigor′eva L.R. et al. // Med. Chem. Res. 2021. V. 30. P. 925. https://doi.org/10.1007/s00044-020-02674-6
- 13. Sodano F., Rolando B., Spyrakis F. et al. // ChemMedChem. 2018. V. 13. P. 1238. https://doi.org/10.1002/cmdc.201800088
- 14. Mironov V.F., Nemtarev A.V., Tsepaeva O.V. et al. // Molecules. 2021. V. 26. P. 6350. https://doi.org/10.3390/molecules26216350
- 15. Khasiyatullina N.R., Gubaidullin A.T., Shinkareva A.M. et al. // Russ. Chem. Bull., Int. Ed. 2020. V. 69. P. 2140. https://doi.org/10.1007/s11172-020-3012-3
- 16. Romanov S., Aksunova A., Bakhtiyarova Y. et al. // J. Organomet. Chem. 2020. V. 910. P. 121130. https://doi.org/10.1016/j.jorganchem.2020.121130
- 17. Шарутин В.В., Шарутина О.К., Механошина Е.С. // Вест. ЮУрГУ. Сер. Химия. 2022. Т. 14. № 2. С. 41. https://doi.org/10.14529/chem220205
- 18. Шарутин В.В., Шарутина О.К., Механошина Е.С. // Журн. общ. химии. 2022. Т. 92. № 6. С. 885. https://doi.org/10.31857/S0044460X22060087
- 19. Шарутин В.В., Шарутина О.К., Механошина Е.С. // Журн. структур. химии. 2022. Т. 63. № 10. С. 99532. https://doi.org/10.26902/JSC_id99532
- 20. Механошина Е.С. // Вест. ЮУрГУ. Сер. Химия. 2023. Т. 15. № 1. С. 31. https://doi.org/10.14529/chem230103
- 21. Механошина Е.С. // Вест. ЮУрГУ. Сер. Химия. 2023. Т. 15. № 2. С. 55. https://doi.org/10.14529/chem230204
- 22. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- 23. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison (WI, USA): Bruker AXS Inc., 1998.
- 24. OLEX2. A Complete Structure Solution, Refinement and Analysis Program / Eds. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 25. Тарасевич Б.Н. ИК-спектры основных классов органических соединений / Под ред. Б.Н. Тарасевича. М.: МГУ, 2012. 54 с.
- 26. Инфракрасная спектроскопия органических и природных соединений: учеб. пособие / Под ред. А.В. Васильева, Е.В. Гриненко, А.О. Щукина и др. СПб.: СПбГЛТА, 2007. 54 с.