RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Synthesis and Study of Mono(arylhydrazino)acenaphthenones and Nickel Complex based on Pyridine-substituted Derivative

PII
10.31857/S0132344X24050012-1
DOI
10.31857/S0132344X24050012
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 5
Pages
287-295
Abstract
Three mono(arylhydrazino)acenaphthenones, that is, mono(2-pyridylhydrazino)acenaphthenone (Py-mhan, L1), mono(4-cyanophenylhydrazino)acenaphthenone (4-CN-Ph-mhan, L2), and mono(3,4,6-trifluoro-2-pyridylhydrazino)acenaphthenone (FPy-mhan, L3), were synthesized by the reaction of acenaphthene quinone with the appropriate arylhydrazine salt; compounds L2 and L3 were obtained for the first time. The subsequent reaction of L1 with nickel chloride in 2 : 1 ratio led to the octahedral complex [Ni(Py-mhan)2] (I), in which Py-mhan acts as a tridentate ligand. All of the prepared compounds were characterized by elemental analysis, IR and 1H NMR spectroscopy, and cyclic voltammetry; the crystal structures of L3 and I were determined by X-ray diffraction.
Keywords
аценафтенгидразоны лиганды рентгеноструктурный анализ комплексы синтез никель циклическая вольтамперометрия
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
29

References

  1. 1. Wang J., Soo H.Sen, Garcia F. // Commun. Chem. 2020. V. 3. № 1. P. 133.
  2. 2. Fomenko I.S., Gushchin A.L. // Russ. Chem. Rev. 2020. V. 89. № 9. P. 966.
  3. 3. Komlyagina V.I., Romashev N.F., Besprozvannykh V.K. et. al. // Inorg. Chem. 2023. V. 62. № 29. P. 11541.
  4. 4. Romashev N.F., Mirzaeva I.V., Bakaev I.V. et. al. // J. Struct. Chem. 2022. V. 63. № 2. P. 242.
  5. 5. Romashev N.F., Bakaev I.V., Komlyagina V.I. et. al. // J. Struct. Chem. 2022. V. 63. № 8. P. 1304.
  6. 6. Fedushkin I.L., Skatova A.A., Chudakova V.A., Fukin G.K. // Angew. Chem. Int. Ed. 2003. V. 42. № 28. P. 3294.
  7. 7. Fedushkin I.L., Maslova O.V., Baranov E. V., Shavyrin, A.S. // Inorg. Chem. 2009. V. 48. № 6. P. 2355.
  8. 8. Bendix J., Clark K.M. // Angew. Chem. Int. Ed. 2016. V. 55. № 8. P. 2748.
  9. 9. Bernauer J., Pölker J., Jacobi von Wangelin A. // ChemCatChem. 2022. V. 14. № 1. P. e202101182.
  10. 10. Chacon-Teran M.A., Findlater M. // Eur. J. Inorg. Chem. 2022. V. 2022. № 30. P. e202200363.
  11. 11. Johnson L.K., Killian C.M., Brookhart M. // J. Am. Chem. Soc. 1995. V. 117. № 23. P. 641415.
  12. 12. Leatherman M.D., Svejda S.A., Johnson L.K., Brookhart M. // J. Am. Chem. Soc. 2003. V. 125. № 10. P. 3068.
  13. 13. Bridges C.R., McCormick T.M., Gibson G.L. et al. // J. Am. Chem. Soc. 2013. V. 135. № 35. P. 13212.
  14. 14. Zhai F., Jordan R.F. // Organometallics. 2017. V. 36. № 15. P. 2784.
  15. 15. Wu R., Klingler Wu, W., Stieglitz, L. et. al. // Coord. Chem. Rev. 2023. V. 474. № 1. Art. 214844.
  16. 16. Fedushkin I.L., Nikipelov A.S., Morozov A.G. et. al. // Chem. Eur. J. 2012. V. 18. № 1. P. 255.
  17. 17. Yakub A.M., Moskalev M.V., Bazyakina N.L., Fedushkin I.L. // Russ. Chem. Bull. 2018. V. 67. № 3. P. 473.
  18. 18. Arrowsmith M., Hill M.S., Kociok-Köhn G. // Organometallics. 2011. V. 30. № 6. P. 1291.
  19. 19. Saini A., Smith C.R., Wekesa F.S. et al. // Org. Biomol. Chem. 2018.V. 16. № 48. P. 9368.
  20. 20. Tamang S.R., Cozzolino A.F., Findlater M. // Org. Biomol. Chem. 2019. V. 17. № 7. P. 1834.
  21. 21. Gushchi, A.L., Romashev N.F., Shmakova A.A. et. al. // Mendeleev Commun. 2020. V. 30. № 1. P. 81.
  22. 22. Fomenko I.S., Gongola M.I., Shulʹpina L.S. et. al. // Catalysts. 2022. V. 12. № 10. P. 1168.
  23. 23. Romashev N.F., Bakae I. V., Komlyagina V.I. et. al. // Int. J. Mol. Sci. 2023. V. 24. № 13. P. 10457.
  24. 24. Bakaev I.V., Romashev N.F., Komlyagina V.I. et. al. // New J. Chem. 2023. V. 47. № 40. P. 18825.
  25. 25. Zhou J.L., Xu Y.H., Jin X.X. et. al. // Inorg. Chem. Commun. 2016. V. 64. P. 67.
  26. 26. Zhou J.L., Sun H.W., Yin D.H. et. al. // J. Mol. Struct. 2017. V. 1134. P. 63.
  27. 27. Gao, Q., Song Y., Zheng C. et. al. // J. Mol. Struct. 2020. V. 1214. P. 128228.
  28. 28. Su Y.X., Zhang C.Z., Song M.X. // Acta Crystallogr. C. 2017. V. 73. № 6. P. 458.
  29. 29. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  30. 30. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  31. 31. Hübschle C.B., Sheldrick G. M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281.
  32. 32. Soldatov D.V. // Mendeleev Commun. 1997. V. 7. № 3. P. 100.
  33. 33. Bose N., Lynton H. // Can. J. Chem. 1973. V. 51. № 12. P. 1952.
  34. 34. Zhang H., Fang L. // Acta Crystallogr. E. 2005. V. 61. № 1. P. m1-m2.
  35. 35. Wriedt M., Jess I., Näther C. // Acta Crystallogr. E. 2010. V. 66. № 7. P. m780.
  36. 36. Van Damme N., Lough A.J., Gorelsky S.I., Lemaire M.T. // Inorg. Chem. 2013. V. 52. № 22. P. 13021.
  37. 37. Niklas J.E., Farnum B.H., Gorden J.D., Gorden A.E.V. // Organometallics. 2017. V. 36. № 23. P. 4626.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library