RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Structural Diversity of Heteroligand 1,2,4-Triphenylcyclopentadienyl-Bipyridine Complexes of Rare Earth Metals

PII
10.31857/S0132344X24060049-1
DOI
10.31857/S0132344X24060049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 6
Pages
385-393
Abstract
The reaction of triphenylcyclopentadienyl potassium and bipyridine with lanthanum, praseodymium, erbium, lutetium, and scandium chloride tetrahydrofuranates results in the formation of binuclear [CpPh3Ln(Bipy)Cl(μ2-Cl)]2 (Ln = La (I), Pr (II)) and mononuclear [CpPh3Ln(Bipy)Cl2(THF)] (Ln = Er (III), Lu (IV), [CpPh3Sc(Bipy)Cl2] (V) complexes (CpPh3 = 1,2,4-triphenylcyclopentadienyl, Bipy = bipyridine). The decrease in the REE radius in the series La…Sc results in the formation of mononuclear instead of binuclear complexes and in a decrease in the coordination number of the central ion. The coplanar arrangement of two different π-systems gives rise to stacking interactions between the triphenylcyclopentadienyl ligand and bipyridine. The molecular structure of complexes I–V was established by X-ray diffraction analysis (CCDC nos. 2308609 (I), 2308608 (II), 2308610 (III), 2308611 (IV), 2308607 (V)).
Keywords
лантаниды трифенилциклопентадиенильный лиганд бипиридин рентгеноструктурный анализ
Date of publication
10.06.2024
Year of publication
2024
Number of purchasers
0
Views
12

References

  1. 1. Arndt S., Okuda J. // Chem. Rev. 2002. V. 102. № 6. P. 1953.
  2. 2. Edelmann F.T. // Comprehensive Organometallic Chemistry III, Elsevier, 2007. 190 p.
  3. 3. Day B. M., Guo F. S., Layfield R.A. //Acc. Chem. Res. 2018. V. 51. № 8. P. 1880.
  4. 4. Evans W.J., Davis B.L. // Chem. Rev. 2002. V. 102. № 6. P. 2119.
  5. 5. Harder S., Naglav D., Ruspic C. et al. // Chem. Eur. J. 2013. V. 19. № 37. P. 12272.
  6. 6. Kelly R.P., Bell T.D.M., Cox R.P. et al. // Organometallics. 2015. V. 34. № 23. P. 5624.
  7. 7. Bardonov D.., Komarov P.D., Ovchinnikova V.I. et al. // Organometallics. 2021. V. 40. № 9. P. 1235.
  8. 8. Bardonov D.A., Puntus L.N., Taidakov I.V. et al. // Mendeleev Commun. V. 32. № 2. P. 198.
  9. 9. Roitershtein D.M., Puntus L.N., Vinogradov A.A. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 10199.
  10. 10. Edelmann F.T., Poremba P. // Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer) / Eds Edelmann F.T., Herrmann W.A., Stuttgart (Germany): Verlag, 1997. P. 34.
  11. 11. Lochmann L., Trekoval J. // J. Organomet. Chem. 1987. V. 326. № 1. P. 1.
  12. 12. Hirsch S.S., Bailey W.J.J. // Org. Chem. 1978. V. 43 № 21. P. 4090.
  13. 13. Bruker. APEX-III. Madison (WI, USA): Bruker AXS Inc., 2019.
  14. 14. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3.
  15. 15. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  16. 16. Sheldrick G.M. // Acta Crystallogr. C. 2013. V. 71. P. 3.
  17. 17. Spek A.L. // Acta Crystallogr. C. 2015. V. 71 № 1. P. 9.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library