RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Dynamic Magnetic Susceptibility Method in Studies of Coordination Compounds

PII
10.31857/S0132344X24070011-1
DOI
10.31857/S0132344X24070011
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 7
Pages
413-428
Abstract
The measurement of the dynamic magnetic susceptibility is a universal method, which is used for the evaluation of magnetic properties of single molecule magnets by scientists all over the world. An information in the Russian scientific literature that can be useful for practical mastering of this method is presently insufficient. To fill this gap, in this work we present a detailed procedure of a magnetochemical experiment for observing slow magnetic relaxation in coordination compounds of 3d- and 4f-element ions and the complete characterization of the dynamics of the magnetic behavior. Special attention is given to usually omitted but important details related to all stages of studying the magnetic relaxation dynamics. The main variants of sample preparation are described, the logics of the construction of a measuring sequence and the procedure of experimental data processing are discussed, and advantages and drawbacks of some programs of the calculation of magnetic relaxation dynamics data are considered. The main concepts and equations used in experimental data analysis are presented, and the primary conclusions that can be made from the obtained results are proposed.
Keywords
магнитные свойства динамическая магнитная восприимчивость методики проведения эксперимента магнитная релаксация молекулярный магнетизм
Date of publication
15.07.2024
Year of publication
2024
Number of purchasers
0
Views
11

References

  1. 1. Sessoli R., Gatteschi D., Caneschi A., et al. // Nature. 1993. V. 365. P. 141.
  2. 2. Ali J., Kumar P., Chandrasekhar V. // Chem. An Asi. J. 2023. V. 19. Art. e202300812
  3. 3. Aravena D., Ruiz E. // Dalton Trans. 2020. V 49. P. 9916.
  4. 4. Bernot K. // Eur. J. Inorg. Chem. 2023. V. 26. Art e202300336.
  5. 5. Edelmann F.T., Farnaby J.H., Jaroschik F., et al. // Coord. Chem. Rev. 2019. V. 398. P. 113005.
  6. 6. Harriman K.L.M., Errulat D., Murugesu M. // Trends in Chem. 2019. V 1. P. 425.
  7. 7. Kragskow J.G.C., Mattioni A., Staab J.K. et al. // Chem. Soc. Rev. 2023. V. 52. P. 4567
  8. 8. Liddle S.T., Van Slageren J. // Chem. Soc. Rev. 2015. V. 44, P. 6655.
  9. 9. Marin R., Brunet G., Murugesu M. // Angew. Chem. Int. Ed. 2021. V. 60. P. 1728.
  10. 10. Matheson B.E., Dais T.N., Donaldson M.E. et al. // Inorg. Chem. Front. 2023. V. 10. P. 6427.
  11. 11. Pointillart F., Bernot K., Le Guennic B., et al. // Chem. Commun. 2023. V. 59. P. 8520.
  12. 12. Pointillart F., Cador O., Le Guennic B., et al. // Coord. Chem. Rev. 2017. V. 346. P. 150.
  13. 13. Raza A., Perfetti M. // Coord. Chem. Rev. 2023. V. 490. P. 215213.
  14. 14. Sekine Y., Nakamura R., Akiyoshi R., et al. // Chem. Plus Chem. 2023. V. 88. Art e202200463
  15. 15. Shao D., Wang X. // Chin. J. Chem. 2020. V. 38, P. 1005.
  16. 16. Swain A., Sharma T., Rajaraman G. // Chem. Commun. 2023. V. 59. P. 3206.
  17. 17. Titiš J., Rajnák C., Boča R. // Inorganics. 2023. V. 11. P. 452.
  18. 18. Vieru V., Gómez‐Coca S., Ruiz E. et al. // Ang. Chem. 2024. V. 136. Art e202303146.
  19. 19. Vostrikova K.E. // Inorganics. 2023. V. 11. P. 307.
  20. 20. Wang C., Meng Y.-S., Jiang S.-D. et al. // Sci. China Chem. 2023. V. 66. P. 683–702.
  21. 21. Wang J., Sun C., Zheng Q. et al. // Chem. An Asi. J. 2023. V. 18. Art e202201297.
  22. 22. Yin X., Deng L., Ruan L. et al. // Materials. 2023. V. 16. P. 3568.
  23. 23. Zabala-Lekuona A., Seco J.M., Colacio E. // Coord. Chem. Rev. 2021. V. 441. P. 213984.
  24. 24. Zhu Z., Li X.-L., Liu S. et al. // Inorg. Chem. Front. 2020. V. 7. P. 3315.
  25. 25. Zhu Z., Tang J. // Chem. Soc. Rev. 2022. V. 51, P. 9469.
  26. 26. Калинников В.Т., Ракитин Ю.В. Введение в магнетохимию: Метод статической магнитной восприимчивости в химии. М.: Наука, 1980. С. 302
  27. 27. Карлин Р. Магнетохимия. М.: Мир, 1989. С. 399
  28. 28. Kahn O. Molecular Magnetism. Weinheim: VCH Publishers. 1993. P. 408
  29. 29. Вонсовский С.В. Магнетизм. М.: Наука, 1971. С. 1032
  30. 30. Ракитин Ю.В., Калинников В.Т. Современная магнетохимия. СПб.: Наука, 1994. С. 272
  31. 31. Новиков В.В., Нелюбина Ю.В. // Успехи химии. 2021. Т 90 С. 1330 (Novikov V.V., Nelyubina Yu.V. // Russ. Chem. Rev. 2021 V. 90 P. 1330).
  32. 32. Long J., Lyubov D.M., Kissel´ A.A. et al. // CrystEngComm. 2022. V. 24. P. 6953.
  33. 33. Long J., Tolpygin A.O., Lyubov D.M. et al. // 2021. Dalton Trans. V. 50. P. 8487.
  34. 34. Long J., Tolpygin A.O., Mamontova E. et al. // Inorg. Chem. Front. 2021. V. 8. P. 1166.
  35. 35. Kazin P.E., Zykin M.A., Trusov L.A. et al. // Dalton Trans. 2020. V. 49. P. 2014.
  36. 36. Sharifullin T.Z., Vasiliev A.V., Eliseev A.A. et al. // Mendel. Commun. 2023. V. 33. P. 866.
  37. 37. Zykin M.A., Kazin P.E., Jansen M. // Chem. A Eur. J. 2020. V. 26. P. 8834.
  38. 38. Lutsenko I.A., Kiskin M.A., Nikolaevskii S.A. et al. // ChemistrySelect. 2019. V. 4. P. 14261.
  39. 39. Nehrkorn J., Valuev I.A., Kiskin M.A. et al. // J. Mater. Chem. 2021. V 9. P. 9446.
  40. 40. Krotkii I.I., Shcherbakova E. Yu., Lyubchenko S.N. et al. // Polyhedron. 2024. V. 251. P. 116876.
  41. 41. Tupolova Y.P., Korchagin D.V., Andreeva A.S. et al. // Magnetochemistry. 2022. V. 8. P. 153.
  42. 42. Aldoshin S.M., Antipin I.S., Kniazeva M.V. et al. // Israel J. Chem. 2020. V. 60. P. 600.
  43. 43. Korchagin D.V., Ivakhnenko E.P., Demidov O.P. et al. // New J. Chem. 2023. V. 47. P. 21353.
  44. 44. Bonnenfant C., Vadra N., Rouzières M. et al. // Dalton Trans. 2024. V. 53. P. 2815.
  45. 45. Dhers S., Wilson R.K., Rouzières M. et al. // Cryst. Growth Des. 2020. V. 20. P. 1538.
  46. 46. Liu J., Nodaraki L.E., Martins D.O. et al. // Eur. J. Inorg. Chem. 2023. V. 26. Art. e202300552.
  47. 47. Rajnák C.; Titiš J.; Boča R. // Magnetochemistry 2021. V. 7. 76.
  48. 48. Petrosyants S.P., Babeshkin K.A., Ilyukhin A.B. et al. // Magnetochemistry. 2023. V. 9. P. 31.
  49. 49. Babeshkin K.A., Gavrikov A.V., Petrosyants S.P. et al. // Eur. J. Inorg. Chem. 2000 V. 46. P. 4380
  50. 50. Feng M., Tong M.L. // Chem. Eur. J. 2018 V. 24. P. 7574.
  51. 51. Mamontova E., Long J., Ferreira R. et al. // Magnetochemistry. 2016. V. 2. P. 41.
  52. 52. Habib F., Lin P.-H., Long J. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 8830.
  53. 53. Origin and OriginPro 2024. https://www.originlab.com/
  54. 54. KaleidaGraph v5 for Mac and Windows. https://www.synergy.com/
  55. 55. Argand J. R. Essai sur une manière de représenter les quantités imaginaires dans les constructions géométriques. Paris: Gauthier-Villars, 1874.
  56. 56. Cole K.S., Cole R.H. // J. Chem. Phys. 1941. V. 9. P. 341.
  57. 57. Ho L.T.A., Chibotaru L.F. // Phys. Rev. B. 2016. V. 94. P. 104422.
  58. 58. Pavlov A.A., Nelyubina Y.V., Kats S.V. et al. // J. Phys. Chem. Lett. 2016. V. 7. P. 4111.
  59. 59. Gavrikov A.V., Koroteev P.S., Efimov N.N. et al. // Dalton Trans. 2017. V. 46. P. 3369.
  60. 60. Gavrikov A.V., Efimov N.N., Dobrokhotova Zh.V. et al. // Dalton Trans. 2017. V. 46. P. 11806.
  61. 61. Петросянц С.П., Бабешкин К.А., Илюхин А.Б. и др. // Коорд. химия. 2021 Т. 47. № 4. С. 137 (Petrosyants S.P., Babeshkin K.A., Ilyukhin A.B. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 165).
  62. 62. Novitchi G., Jiang S., Shova S. et al. // Inorg. Chem. 2017. V. 56 P. 14809.
  63. 63. The Chilton Group. Magnetism, Spectroscopy, Theory. https://www.nfchilton.com/
  64. 64. Reta D., Chilton N.F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 23567.
  65. 65. Blackmore W.J.A., Gransbury G.K., Evans P. et al. // Phys. Chem. Chem. Phys. 2023 V. 25. P. 16735.
  66. 66. Rouzières M. MagSuite. Zenodo, 2020. https://doi.org/10.5281/zenodo.4030310
  67. 67. The Molecular Materials & Magnetism. https://m3.crpp.cnrs.fr/magsuite/
  68. 68. Polyzou C.D., Koumousi E.S., Lada Z.G. et al. // Dalton Trans. 2017. V. 46. P. 14812.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library