RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Coordination Compounds of Alkali and Rare Earth Metals Based on Centrosymmetric Chlorine-Substituted Bis-Mercaptooxazole. Synthesis, Structure, and Luminescence

PII
10.31857/S0132344X24070048-1
DOI
10.31857/S0132344X24070048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 7
Pages
447-459
Abstract
New coordination polymers were synthesized. A ditopic centrosymmetric organic ligand containing oxazole heterocycles, 4,8-dichlorobenzo[1,2d:4,5d´]bis(oxazole)-2,6(3H,7H)-dithione (H2L), was prepared and structurally characterized. It was shown that deprotonated H2L forms non-luminescent binuclear molecular complexes Li2L(THF)6 (I) and Na2L(DME)4 (II) with alkali metals, while complexes of H2L with lanthanides are ionic compounds [Ln(DMSO)8][L]1.5 (Ln = Nd (III), Yb (IV)) exhibiting moderate metalcentered emission in the near-infrared (IR) range, despite the absence of coordination of the ligand L to lanthanide ions. The molecular structures of H22DMSO and I–III were established by X-ray diffraction (CCDC no. 2320461 (H22DMSO), 2320462 (I), 2320463 (II), 2320464 (III)).
Keywords
лантаноиды бензоксазол фотолюминисценция щелочные металлы гетероциклические лиганды
Date of publication
15.07.2024
Year of publication
2024
Number of purchasers
0
Views
11

References

  1. 1. Bünzli J.C.G. // Handb. Phys. Chem. Rare Earths. 2016. V. 50. P. 141.
  2. 2. Bünzli J.C.G. // Coord. Chem. Rev. 2015. V. 293–294. P. 19.
  3. 3. Bryleva Y.A., Artem´ev A.V., Glinskaya L.A. et al. // New J. Chem., 2021. V. 45. P. 13869.
  4. 4. Ivanova A.A., Gontcharenko V.E., Lunev A.M. et al. // Inorganics. 2022. V. 10. P. 104.
  5. 5. Alzard R.H., Siddig L.A., Saleh, N. et al. // Sci. Rep. 2022. V. 12. P. 1.
  6. 6. Nosov V.G., Kupryakov A.S., Kolesnikov I.E. et al. // Molecules. 2022. V. 27. P. 5763.
  7. 7. Liu W., Li D., Wang F. et al. // Opt. Mater. 2022. V. 123. P. 111895.
  8. 8. Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chemie. 2023. 135. P. e202306680
  9. 9. Wang S., Sun B., Su Z. et al. // Inorg. Chem. Front. 2022. V. 9. P. 3259
  10. 10. Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533
  11. 11. Bazhina E.S., Shmelev M.A., Voronina J.K. et al. // New J. Chem. 2023. V. 47. P. 19251.
  12. 12. Wang X., Wang Y, Wang Y. et al. // Chem. Commun. 2020. V. 56. P. 233.
  13. 13. Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012. V. 112. P. 1196.
  14. 14. Getman R.B., Bae Y.S., Wilmer C.E. et al. // Chem. Rev. 2012. V. 112. P. 703.
  15. 15. Li J.R., Sculley J., Zhou H.C. // Chem. Rev. 2012. V. 112. P. 869.
  16. 16. Furukawa H., Cordova K. E., O´Keeffe M. et al. // Science. 2013. V. 341. P. 1230444.
  17. 17. Xia T., Cao W., Guan L. et al. // Dalton. Trans. 2022. V. 51. P. 5426.
  18. 18. Zhou Z., Shang M., Yao Z. et al. // Dye. Pigment. 2022. V. 198. P. 110016.
  19. 19. Demakov P.A., Sapchenko S.A., Samsonenko D.G. et al. // J. Struct. Chem. 2019. V. 60. P. 815.
  20. 20. Songlin Y., Dongxue S., Kaisu L. et al. // Dye. Pigment. 2023. V. 220. P. 111673.
  21. 21. Belousov Y.A., Metlin M.T., Metlina D.A. et al. // Polymers. 2023. V. 15. P. 867.
  22. 22. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625.
  23. 23. Rogozhin A.F., Ilichev V.A., Fagin A.A. et al. // New J. Chem. 2022. V. 46. P. 13987.
  24. 24. Balashova T.V., Kukinov A.A., Pushkarev A.P. et al. // J. Lumin. 2018. V. 203. P. 286.
  25. 25. Ilichev V.A., Rozhkov A.V., Rumyantcev R.V. et al. // Dalton Trans. 2017. V. 46. P. 3041.
  26. 26. Shavaleev N.M., Scopelliti R., Gumy F. et al. // Inorg. Chem. 2009. V. 48. P. 6178.
  27. 27. Katkova M.A., Balashova T.V., Ilichev V.A. et al. // Inorg. Chem. 2010. V. 49. P. 5094.
  28. 28. Ilichev V.A., Rogozhin A.F., Belyakova A.V. et al. // Organometallics. 2023, V. 42. P. 2792.
  29. 29. Hu J.X., Karamshuk S., Gorbaciova J. et al. // J. Mat. Chem. C. 2018. V. 6. P. 7012.
  30. 30. Inbasekaran M., Strom R. // The New Journal for Organic Synthesis. 1991. V. 449. P. 48674.
  31. 31. Rigaku Oxford Diffraction. CrysAlis Pro software system, version 1.171.41.122a, Rigaku Corporation, Wroclaw, Poland, 2021.
  32. 32. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3.
  33. 33. Sheldrick G.M. // (2015). Acta Cryst. C. 2015. V. 71. P. 3.
  34. 34. Watts S., Peloquin A.J., Bandara M. et al. // Acta Cryst. C. 2022. V. 78. P. 702.
  35. 35. Jebbari S., Abdellatif E.K., Ahbada M. et al. // IUCrDATA. 2019. V. 4. Px191119.
  36. 36. Janiak C. // J. Chem. Soc. Dalton Trans. 2000. P. 3885.
  37. 37. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.
  38. 38. Batsanov S.S. // Inorg. Mater. 2001. V. 37. P. 871.
  39. 39. Armstrong D.R., Banbury F.A., Davidson M.G. et al. // J. Chem. Soc. Chem. Comm. 1992. P. 1492.
  40. 40. KreiderMueller A., Rong Y., Owena, J.S. et al. // Dalton Trans. 2014. V. 43. P. 10852.
  41. 41. Prasanna M.D., Guru Row T.N. // Crystal Engineering. 2000. V. 3. P. 135.
  42. 42. Katkova M.A., Borisov A.V., Fukin G.K. et al. // Inorg. Chim. Acta, 2006, V. 359 P. 4289.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library