RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Cadmium(II)-Organic Frameworks with the Polynuclear Unit: Dimensionality Control and Luminescence Response to Pyridine

PII
10.31857/S0132344X24090047-1
DOI
10.31857/S0132344X24090047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 9
Pages
566-576
Abstract
New porous metal-organic frameworks (MOF) [Cd7(Btdc)7(Bpa)2(Dmf)2(H2O)2] · 15Dmf · 2H2O (I) and [Cd7(Btdc)7(Bpe)2(Dmf)2] · 15Dmf · 3H2O (II) (H2Btdc is 2,2’-bithiophene-5,5’-dicarboxylic acid, Bpa is 1,2-bis(4-pyridyl)ethane, Bpe is 1,2-bis(4-pyridyl)ethylene, and Dmf is N,N-dimethylformamide) are synthesized under solvatothermal conditions. The structures and compositions of the compounds are determined by single-crystal X-ray diffraction (XRD) (CIF files ССDС nos. 2364290 (I) and 2364289 (II)) and confirmed by powder XRD, elemental analysis, thermogravimetry, and IR spectroscopy. Compound I has a 2D structure based on the heptanuclear discrete building unit {Cd7} with the linear structure. Compound II is a 3D MOF in which the {Cd7} building units are linked into a continuous chain motif due to additional interactions. The formation of discrete or continuous chains is directly related to the nature of the N-donor bridging ligand (Bpe or Bpa). Compounds I and II have open structures with the accessible volume about 50%. The solvate molecules are replaced by thiophene, benzene, and pyridine, and the luminescence properties of the prepared adducts are studied. Luminescence quenching in the presence of thiophene and an increase in the luminescence intensity in the presence of pyridine accompanied by a change in the quantum yield by 4–5 times are shown.
Keywords
металл-органические координационные полимеры рентгеноструктурный анализ люминесценция пиридин
Date of publication
08.09.2024
Year of publication
2024
Number of purchasers
0
Views
10

References

  1. 1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
  2. 2. Amooghin A.E., Sanaeepur H. et al. // Chem. Soc. Rev. 2022. V. 51. P. 7427.
  3. 3. Chen K., Mousavi S.H. et al. // Chem. Soc. Rev. 2022. V. 51. P. 1139.
  4. 4. Shen Y., Tissot F., Serre C. // Chem. Sci. 2022. V. 13. P. 13978.
  5. 5. Fang X., Zong, B., Mao, S. // Nano-Micro Lett. 2018. V. 10. P. 63.
  6. 6. Sohrabi H., Ghasemzadeh S., Ghoreishi Z. et al. // Mater. Chem. Phys. 2023. V. 299. Р. 127512.
  7. 7. Tranchemontagne D.J., Mendoza-Cortes J.L., O′Keeffe M. et al. // Chem. Soc. Rev. 2009. V. 38. P. 1257.
  8. 8. Sapianik, A.A., Fedin, V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 443.
  9. 9. Borsari M. // Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd., 2014. P. 1.
  10. 10. Borsari M. // Encyclopedia of Inorganic Chemistry. John Wiley & Sons, Ltd., 2006. P. 1.
  11. 11. Trofimova O.Y., Meshcheryakova I.N. et al. // CrystEngComm. 2024. V. 26. P. 3077.
  12. 12. Guo X.-Z., Chen S.-S. et al. // ACS Omega. 2019 V. 4. P. 11540.
  13. 13. Guo Z., Cao R., Li. X. // Eur. J. Inorg. Chem. 2007. V. 5. P. 742.
  14. 14. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // J. Struct. Chem. 2022. V. 63. P. 1831.
  15. 15. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // J. Struct. Chem. 2020. V. 61. P. 1800.
  16. 16. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Crystal Research and Technology. 2020. V. 55. Р. 1900184.
  17. 17. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y. et al. // Crystals. 2017. V. 7. P. 325.
  18. 18. Kabsch W. // XDS Acta Crystallogr. D. 2010. V. 66. P. 125.
  19. 19. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  20. 20. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  21. 21. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. P. 1281.
  22. 22. Speck A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
  23. 23. Yudina Y.A., Samsonova A.M., Bolotov V.A. et al. // J. Struct. Chem. 2021. V. 62. P. 1599.
  24. 24. Einkauf J.D., Ortega R.E. et al. // New J. Chem. 2017. V.41. P. 10929.
  25. 25. Zhao J., Wang X.-L., Shi X. et al. // Inorg. Chem. 2011. V. 50. P. 3198.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library