RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Mechanism of the Formation of trans- and cis-Isomers of the bis (chelate) Pd(II) and Pt(II) Complexes Based on (N,O(S, Se))-Bidentate Azomethines. А Quantum-Chemical Study

PII
10.31857/S0132344X24110059-1
DOI
10.31857/S0132344X24110059
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 11
Pages
799-806
Abstract
The molecular structures and relative energies of trans- and cis-isomers of bis(chelate) complexes of Pd(II) and Pt(II) salicylal-, thiosalicylal-, and selenosalicylaldiiminates are calculated using the density functional theory. The role of the kinetic factor in the formation of the trans- and cis-isomers of the PdL2 and PtL2 complexes is studied in the framework of the model of the step-by-step formation of the bis(ligand) metal complexes ML2 (M++ + (L) → (ML)+, (ML)+ + (L)→ ML2). The competition of the trans- and cis-isomers of the PdL2 and PtL2 bis(chelate) azomethine complexes with the coordination nodes MN2O2, MN2S2, and MN2Se2 is shown to be determined by both the energy preference of one of possible configurations and activation barriers of the isomerization of the products formed in the first step of the interaction of the initial reagents.
Keywords
квантово-химическое моделирование бис-хелатные комплексы палладия и платины стереоизомеризация салицилаль- тиосалицилаль- и селеносалицилальдиимины
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
13

References

  1. 1. Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. V. 126. № 1. P. 1.
  2. 2. Bourget-Merle. L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. V. 102. № 6. P. 3031.
  3. 3. Garnovskii A.D., Vasilchenko I.S., Garnovskii D.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
  4. 4. Kharabaev N.N., Starikov A.G., Minkin V.I. // Dokl. Chem. 2014. V. 458. P. 181.
  5. 5. Kharabayev N.N., Starikov A.G., Minkin V.I. // J. Struct. Chem. 2016. V. 57. № 3. P. 431.
  6. 6. Kharabayev N.N., Minkin V.I. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 765. https://doi.org/10.1134/S1070328422700117
  7. 7. Faghih Z., Neshat A., Wojtczak A. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 404.
  8. 8. Tshabalala T., Ojwach S. // J. Organomet. Chem. 2018. V. 873. P. 35.
  9. 9. Firinci R., Firinci E., Basbulbul G. et al. // Transition Met. Chem. 2019. V. 44. P. 391.
  10. 10. Sarto L.E., Badaro W.P.D., de Gois E.P. et al. // J. Mol. Struct. 2020. V. 1204. P. 127549.
  11. 11. Komiya N., Okada M., Fukumoto K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 6493.
  12. 12. Patterson A.E., Miller J.J., Miles B.A. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 88
  13. 13. Hashimoto T., Fukumoto K., Le N.H-T. et al. // Dalton Trans. 2016. V. 45. P. 19257.
  14. 14. Iwata S., Takahashi H., Ihara A. et al. // Transition Met. Chem. 2018. V. 43. P. 115.
  15. 15. Martin E.M., Bereman R.D., Reibenspies J. // Inorg. Chim. Acta.1992. V.191. P. 171.
  16. 16. Antsyshkina A.S., Porai-Koshits M.A., Vasil’chenko I.S. et al. // Proc. Nat. Acad. Sci. USSR. 1993. V. 330. P. 54.
  17. 17. Orysyk S.I., Bon V.V., Pekhnyo V.I. // Acta Crystallogr. E. 2009. V. 65. m 1059.
  18. 18. Orysyk S.I., Bon V.V., Pekhnyo V.I., et al. // Polyhedron. 2012. V. 38. P. 15.
  19. 19. Al-Jibori S.A., Dayaaf N.A., Mohammed M.Y., et al. // J. Chem. Cryst. 2013. V.43. P. 365.
  20. 20. Dutta P.K., Panda S., Zade S.S. // Inorg. Cnim. Acta. 2014. V. 411. P. 83.
  21. 21. Харабаев Н.Н., Коган В.А., Осипов О.А. // Журн. структ. хим. 1979. Т. 20. № 1. С. 133.
  22. 22. Kharabayev N. N. // Russ. J. Coord. Chem. 2017. Vol. 43. № 12. P. 807. https://doi.org/10.1134/S107032841712003X
  23. 23. Kharabayev N.N. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 573. https://doi.org/10.1134/S1070328419080050
  24. 24. Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. 333 p.
  25. 25. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford CT, Gaussian, Inc., 2013.
  26. 26. Sousa S.F., Fernandes P.A., Ramos M.J. //J. Phys. Chem. A. 2007. V. 111. № 42. Р. 10439.
  27. 27. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. № 2. P. 96.
  28. 28. Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
  29. 29. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
  30. 30. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
  31. 31. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  32. 32. Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. V. 91. P. 146401.
  33. 33. Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
  34. 34. Харабаев Н. Н. // Коорд. химия. 1991. Т. 17. № 5. С. 579.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library