- Код статьи
- S0132344X25010023-1
- DOI
- 10.31857/S0132344X25010023
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 51 / Номер выпуска 1
- Страницы
- 12-19
- Аннотация
- Взаимодействием SbI3 с иодидами катионов семейства пиридиния в смеси ацетонитрила и ацетона получены два полимерных иодоантимонатных комплекса –– (1-MePy)[SbI4] (I) и (3-Br-1-MePy)[SbI4] (II)). Особенности кристаллической структуры были установлены методом рентгено-структурного анализа). Методом термогравиметрического анализа для соединений I, II оценена их термическая стабильность. Исходя из спектров диффузного отражения были получены значения оптической ширины запрещенной зоны.
- Ключевые слова
- рентгеноструктурный анализ комплексные соединения галогенидные комплексы нековалентные взаимодействия сурьма
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
- 2. Buikin P.A., Rudenko A.Y., Ilyukhin A.B. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 111. https://doi.org/10.1134/S1070328420020049
- 3. Buikin P.A., Rudenko A.Y., Baranchikov A.E. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 6. P. 373. https://doi.org/10.1134/S1070328418060015
- 4. Chen Y., Yang Z., Guo C.X. et al. // Eur. J. Inorg. Chem. 2010. № 33. P. 5326. https://doi.org/10.1002/ejic.201000755
- 5. Möbs J., Gerhard M., Heine J. // Dalton Trans. 2020. V. 49. № 41. P. 14397. https://doi.org/10.1039/d0dt03427d
- 6. Hrizi C., Trigui A., Abid Y. et al. // J. Solid State Chem. 2011. V. 184. № 12. P. 3336. https://doi.org/10.1016/j.jssc.2011.10.004
- 7. Sharutin V.V., Pakusina A.P., Sharutina O.K. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 8. P. 541. https://doi.org/10.1023/B:RUCO.0000037432.61330.07
- 8. Möbs J., Stuhrmann G., Weigend F. et al. // Chem. Eur. J. 2022. https://doi.org/10.1002/chem.202202931
- 9. Zhao J.-Q., Shi H.-S., Zeng L.-R. et al. // Chem. Eng. J. 2022. V. 431. https://doi.org/10.1016/j.cej.2021.134336
- 10. Feng L.-J., Zhao Y.-Y., Song R.-Y. et al. // Inorg. Chem. Commun. 2022. V. 136. https://doi.org/10.1016/j.inoche.2021.109146
- 11. Fateev S.A., Petrov A.A., Khrustalev V.N. et al. // Chem. Mater. 2018. V. 30. № 15. P. 5237. https://doi.org/10.1021/acs.chemmater.8b01906
- 12. Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
- 13. Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992. https://doi.org/10.1134/S0036023622070075
- 14. Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
- 15. Zhang Q., Wu Y., Fu H. et al. // J. Colloid Interface Sci. 2024. V. 664. № March. P. 809. https://doi.org/10.1016/j.jcis.2024.03.057
- 16. Huang Y., Yu J., Wu Z. et al. // RSC Adv. 2024. V. 14. № 7. P. 4946. https://doi.org/10.1039/d3ra07998h
- 17. Chen Z., Hu Y., Wang J. et al. // Chem. Mater. 2020. V. 32. № 4. P. 1517. https://doi.org/10.1021/acs.chemmater.9b04582
- 18. Dai Y., Poidevin C., Ochoa-Hernández C. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 14. P. 5788. https://doi.org/10.1002/anie.201915034
- 19. Wu L.Y., Mu Y.F., Guo X.X. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 28. P. 9491. https://doi.org/10.1002/anie.201904537
- 20. Lin K., Xing J., Quan L.N. et al. // Nature. 2018. V. 562. № 7726. P. 245. https://doi.org/10.1038/s41586-018-0575-3
- 21. Igbari F., Wang Z.K., Liao L.S. // Adv. Energy Mater. 2019. V. 9. № 12. P. 1. https://doi.org/10.1002/aenm.201803150
- 22. Stranks S.D., Snaith H.J. // Nat. Nanotechnol. 2015. V. 10. № 5. P. 391. https://doi.org/10.1038/nnano.2015.90
- 23. Li X., Shi J., Chen J. et al. // Materials (Basel). 2023. V. 16. № 12. https://doi.org/10.3390/ma16124490
- 24. Lei Y., Wang S., Xing J. et al. // Inorg. Chem. 2020. V. 59. № 7. P. 4349. https://doi.org/10.1021/acs.inorgchem.9b03277
- 25. Kojima A., Teshima K., Shirai Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
- 26. Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. // Prog. Photovoltaics Res. Appl. 2022. V. 30. № 7. P. 687. https://doi.org/10.1002/pip.3595
- 27. Hu Y.Q., Hui H.Y., Lin W.Q. et al. // Inorg. Chem. 2019. V. 58. № 24. P. 16346. https://doi.org/10.1021/acs.inorgchem.9b01439
- 28. Dennington A.J., Weller M.T. // Dalton Trans. 2018. V. 47. № 10. P. 3469. https://doi.org/10.1039/c7dt04280a
- 29. Mastryukov M.V., Son A.G., Tekshina E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1652. https://doi.org/10.1134/S0036023622100540
- 30. Liu H., Zhang Z., Zuo W. et al. // Adv. Energy Mater. 2023. V. 13. № 3. https://doi.org/10.1002/aenm.202202209
- 31. Pai N., Chatti M., Fürer S.O. et al. // Adv. Energy Mater. 2022. V. 12. № 32. P. 2201482. https://doi.org/10.1002/aenm.202201482
- 32. Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/J.CCR.2015.10.010
- 33. Wu L.-M., Wu X.-T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/J.CCR.2009.08.003
- 34. Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10
- 35. Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. № 9. P. 5360. https://doi.org/10.1021/acs.cgd.1c00654
- 36. Eliseeva A.A., Ivanov D.M., Rozhkov A.V. et al. // JACS Au. 2021. V. 1. № 3. P. 354. https://doi.org/10.1021/jacsau.1c00012
- 37. Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // CrystEngComm. 2020. V. 22. № 24. P. 4180. https://doi.org/10.1039/c6ra90077a
- 38. Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. № 16. P. 2230. https://doi.org/10.1039/d0qo00678e
- 39. Kubasov A.S., Avdeeva V.V. // 2024. № Ii. P. 12.
- 40. Ball M.L., Milić J.V., Loo Y.L. // Chem. Mater. 2022. V. 34. № 6. P. 2495. https://doi.org/10.1021/acs.chemmater.1c03117
- 41. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- 42. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- 43. Dolomanov O.V.O. V., Bourhis L.J.L.J., Gildea R.J.R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- 44. Oswald I.W.H., Mozur E.M., Moseley I.P. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5818. https://doi.org/10.1021/acs.inorgchem.9b00170
- 45. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/JP8111556
- 46. Pohl S., Lotz R., Saak W. et al. // Angew. Chem. Int. Ed. English. 1989. V. 28. № 3. P. 344. https://doi.org/10.1002/anie.198903441
- 47. Janczak J., Perpétuo G.J. // Acta Crystallogr. C. 2006. V. 62. № 7. P. M323. https://doi.org/10.1107/S010827010601910X
- 48. Li Y., Xu Z., Liu X. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 6544. https://doi.org/10.1021/acs.inorgchem.9b00718
- 49. Sharutin V.V., Senchurin V.S., Sharutina O.K. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1561. https://doi.org/10.1134/S0036023611100196
- 50. Möbs J., Stuhrmann G., Wippermann S. et al. // ChemPlusChem. 2023. V. 88. № 6. P. E202200403.
- 51. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
- 52. Bhattacharyya D., Chaudhuri S., Pal A. // Vacuum. 1992. V. 43. № 4. P. 313. https://doi.org/10.1016/0042-207X (92)90163-Q
- 53. Mousdis G.A., Ganotopoulos N.M., Barkaoui H. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 28. P. 3401. https://doi.org/10.1002/ejic.201700277