ОХНМКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

ФТОРСОДЕРЖАЩИЕ ПОЛИДЕНТАТНЫЕ бис-ГЕТЕРОЦИКЛЫ НА ОСНОВЕ ДИ- И ТРИКЕТОПОДОБНЫХ СТРОИТЕЛЬНЫХ БЛОКОВ В ПОЛУЧЕНИИ КОМПЛЕКСОВ ЦИНКА(II)

Код статьи
S0132344X25010054-1
DOI
10.31857/S0132344X25010054
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 1
Страницы
41-50
Аннотация
Разработан подход к синтезу полидентатных лигандов, в структуре которых NH-пиразольный цикл соединен гидразонной группой с азиновым фрагментом (пиридином либо пиримидином). В реакциях с хлоридом цинка(II) полученные бис-гетероциклические соединения выступают в качестве тридентатных лигандов, образуя моноядерные комплексы [Zn(L)Cl2] (CCDC № 2352630 (I), 2352631 (II)). Для комплекса II, содержащего в качестве азинового фрагмента пиридиновый цикл, измерены абсолютный квантовый выход (QY = 12%) и время жизни флуоресценции (τ = 2.64 нс).
Ключевые слова
фторированные пиразолы пиримидин пиридин конденсация УФ спектроскопия
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. He L., Duan L., Qiao J. et al. // Adv. Funct. Mater. 2008. V. 18. P. 2123. https://doi.org/10.1002/adfm.200701505
  2. 2. Dolinar B.S., Alexandropoulos D.I., Vignesh K.R. // J. Am. Chem. Soc. 2018. V. 140. P. 908. https://doi.org/10.1021/jacs.7b12495
  3. 3. Bryleva Yu.A., Glinskaya L.A., Agafontsev A.M. et al. // J. Struct. Chem. 2020. V. 61. P. 1810. https://doi.org/10.1134/S0022476619080110
  4. 4. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Inorg. Chim. Acta. 2023. V. 547. P. 121359. https://doi.org/10.1016/j.ica.2022.121359
  5. 5. Zhu Z.-L., Gnanasekaran P., Yan J., Zheng Z. et al. // Inorg. Chem. 2022. V. 61. P. 8898. https://doi.org/10.1021/acs.inorgchem.2c01026
  6. 6. Yeh H.-H., Ho S.-T., Chi Y.P. et al. // J. Mater. Chem. A. 2013. V. 1. P. 7681. https://doi.org/10.1039/C3TA10988G
  7. 7. Lu C.-W., Wang Y., Chi Y. // Chem. Eur. J. 2016. V. 22. P. 17892. https://doi.org/:10.1002/chem.201601216
  8. 8. Hirahara M., Iwamoto A., Teraoka Y.P. et al. // Inorg. Chem. 2024. V. 63. P. 1988. https://doi.org/10.1021/acs.inorgchem.3c03716
  9. 9. Berkbigler G., Liu Q., Hoefer N. et al. // Eur. J. Inorg. Chem. 2024. P. e202300548. https://doi.org/10.1002/ejic.202300548
  10. 10. Parshad M., Kumar D., Verma V. // Inorg. Chim. Acta. 2024. V. 560. P. 121789. https://doi.org/10.1016/j.ica.2023.121789
  11. 11. Kapustina A., Tupolova Y.P., Popov L.D. et al. // Dalton Trans. 2024. V. 53. P. 3330. https://doi.org/10.1039/D3DT03750A
  12. 12. Saloutin V.I., Edilova Y.O., Kudyakova Y.S. et al. // Molecules. 2022. V. 27. 7894. https://doi.org/10.3390/molecules27227894
  13. 13. Yan Y.-B., Yang R.-W., Zhang H.-W. et al. // J. Mol. Struct. 2024. V. 1299. P. 137148. https://doi.org/10.1016/j.molstruc.2023.137148
  14. 14. Barbieri A., Accorsi G., Armaroli N. // Chem. Commun. 2008. P. 2185. https://doi.org/10.1039/b716650h
  15. 15. Alam P., Climent C., Alemany P., Laskar I.R. // J. Photochem. Photobiol. C. 2019. V. 41. P. 100317. https://doi.org/10.1016/j.jphotochemrev.2019.100317
  16. 16. Tong X.-L., Xiong C., Lin J.-Q. et al. // J. Mol. Struct. 2018. V. 1152. P. 344. https://doi.org/10.1016/j.molstruc.2017.09.054
  17. 17. Zhang X., Chi Z., Zhang Y. et al. // J. Mater. Chem. C. 2013. V. 1. P. 3376. https://doi.org/10.1039/c3tc30316k
  18. 18. Ali A., Pervaiz M., Saeed Z. et al. // Inorg. Chem. Commun. 2022. V. 145. P. 109903. https://doi.org/10.1016/j.inoche.2022.109903
  19. 19. Farfán R.A., Britos M.L., Gómez M.I. et al. // J. Mol. Struct. 2022. V. 1258. P. 132654. https://doi.org/10.1016/j.molstruc.2022.132654
  20. 20. Pervaiz M., Sadiq A., Sadiq S. et al. // Inorg. Chem. Commun. 2022. V. 137. P. 109206. https://doi.org/10.1016/j.inoche.2022.109206
  21. 21. Pellei M., Bello F.D., Porchia M., Santini C. // Coord. Chem. Rev. 2021. V. 445. P. 214088. https://doi.org/10.1016/j.ccr.2021.214088
  22. 22. Kumar N., Roopa, Bhalla V., Kumar M. // Coord. Chem. Rev. 2021. V. 427. P. 213550. https://doi.org/10.1016/j.ccr.2020.213550
  23. 23. Tarushi A., Totta X., Papadopoulos A. et al. // Eur. J. Med. Chem. 2014. V. 74. P. 187. https://doi.org/10.1016/j.ejmech.2013.12.019
  24. 24. Bazhin D.N., Chizhov D.L., Röschenthaler G.-V. et al. // Tetrahedron Lett. 2014. V. 55. № 42. P. 5714. https://doi.org/10.1016/j.tetlet.2014.08.046
  25. 25. Edilova Y.O., Kudyakova Y.S., Kiskin M.A et al. // J. Fluor. Chem. 2022. V. 253. P. 109932. https://doi.org/10.1016/j.jfluchem.2021.109932
  26. 26. Bazhin D.N., Kudyakova Y.S., Röschenthaler G.-V et al. // Eur. J. Org. Chem. 2015. P. 5236. https://doi.org/10.1002/ejoc.201500737
  27. 27. Кудякова Ю.С., Оноприенко А.Я., Слепухин П.А. и др. // Химия гетероцикл. соед. 2019. Т. 55. С. 517.
  28. 28. Kudyakova Y.S., Onoprienko A.Y., Slepukhin P.A. et al. // Chem. Heterocycl. Comp. 2019. V. 55. P. 517.https://doi.org/10.1007/s10593-019-02488-4
  29. 29. Bazhin D.N., Kudyakova Y.S., Slepukhin P.A. et al. // Mendeleev Commun. 2018. V. 26. P. 54. https://doi.org/10.1016/j.mencom.2018.03.032
  30. 30. Бажин Д.Н., Кудякова Ю.С., Эдилова Ю.О. и др. // Изв. АН. Сер. хим. 2022. Т. 71. № 7. С. 1321.
  31. 31. Bazhin D.N., Kudyakova Y.S., Edilova Y.O et al. // Russ. Chem. Bull. 2022. V. 71. P. 1321. https://doi.org/10.1007/s11172-022-3539-6
  32. 32. Gorbunova M.G., Gerus I.I., Kukhar V.P. // Synthesis. 2000. P. 738. https://doi.org/10.1055/s-2000-6386
  33. 33. Dolomanov O.V., Bourhis L.J., Gildea R.J et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  34. 34. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
  35. 35. Mittersteiner M., Bonacorso H.G., Martins M.A.P., Zanatta N. // Eur. J. Org. Chem. 2021. P. 3886. https://doi.org/10.1002/ejoc.202100495
  36. 36. Kudyakova Y.S., Bazhin D.N, Goryaeva M.V. et al. // Russ. Chem. Rev. 2014. V. 83. P. 120. https://doi.org/10.1070/RC2014v083n02ABEH004388
  37. 37. Llunell M., Casanova D., Cirera J., et al. SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. V. 2.1. Barcelona, 2013.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека