- Код статьи
- S0132344X25010054-1
- DOI
- 10.31857/S0132344X25010054
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 51 / Номер выпуска 1
- Страницы
- 41-50
- Аннотация
- Разработан подход к синтезу полидентатных лигандов, в структуре которых NH-пиразольный цикл соединен гидразонной группой с азиновым фрагментом (пиридином либо пиримидином). В реакциях с хлоридом цинка(II) полученные бис-гетероциклические соединения выступают в качестве тридентатных лигандов, образуя моноядерные комплексы [Zn(L)Cl2] (CCDC № 2352630 (I), 2352631 (II)). Для комплекса II, содержащего в качестве азинового фрагмента пиридиновый цикл, измерены абсолютный квантовый выход (QY = 12%) и время жизни флуоресценции (τ = 2.64 нс).
- Ключевые слова
- фторированные пиразолы пиримидин пиридин конденсация УФ спектроскопия
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 1
Библиография
- 1. He L., Duan L., Qiao J. et al. // Adv. Funct. Mater. 2008. V. 18. P. 2123. https://doi.org/10.1002/adfm.200701505
- 2. Dolinar B.S., Alexandropoulos D.I., Vignesh K.R. // J. Am. Chem. Soc. 2018. V. 140. P. 908. https://doi.org/10.1021/jacs.7b12495
- 3. Bryleva Yu.A., Glinskaya L.A., Agafontsev A.M. et al. // J. Struct. Chem. 2020. V. 61. P. 1810. https://doi.org/10.1134/S0022476619080110
- 4. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Inorg. Chim. Acta. 2023. V. 547. P. 121359. https://doi.org/10.1016/j.ica.2022.121359
- 5. Zhu Z.-L., Gnanasekaran P., Yan J., Zheng Z. et al. // Inorg. Chem. 2022. V. 61. P. 8898. https://doi.org/10.1021/acs.inorgchem.2c01026
- 6. Yeh H.-H., Ho S.-T., Chi Y.P. et al. // J. Mater. Chem. A. 2013. V. 1. P. 7681. https://doi.org/10.1039/C3TA10988G
- 7. Lu C.-W., Wang Y., Chi Y. // Chem. Eur. J. 2016. V. 22. P. 17892. https://doi.org/:10.1002/chem.201601216
- 8. Hirahara M., Iwamoto A., Teraoka Y.P. et al. // Inorg. Chem. 2024. V. 63. P. 1988. https://doi.org/10.1021/acs.inorgchem.3c03716
- 9. Berkbigler G., Liu Q., Hoefer N. et al. // Eur. J. Inorg. Chem. 2024. P. e202300548. https://doi.org/10.1002/ejic.202300548
- 10. Parshad M., Kumar D., Verma V. // Inorg. Chim. Acta. 2024. V. 560. P. 121789. https://doi.org/10.1016/j.ica.2023.121789
- 11. Kapustina A., Tupolova Y.P., Popov L.D. et al. // Dalton Trans. 2024. V. 53. P. 3330. https://doi.org/10.1039/D3DT03750A
- 12. Saloutin V.I., Edilova Y.O., Kudyakova Y.S. et al. // Molecules. 2022. V. 27. 7894. https://doi.org/10.3390/molecules27227894
- 13. Yan Y.-B., Yang R.-W., Zhang H.-W. et al. // J. Mol. Struct. 2024. V. 1299. P. 137148. https://doi.org/10.1016/j.molstruc.2023.137148
- 14. Barbieri A., Accorsi G., Armaroli N. // Chem. Commun. 2008. P. 2185. https://doi.org/10.1039/b716650h
- 15. Alam P., Climent C., Alemany P., Laskar I.R. // J. Photochem. Photobiol. C. 2019. V. 41. P. 100317. https://doi.org/10.1016/j.jphotochemrev.2019.100317
- 16. Tong X.-L., Xiong C., Lin J.-Q. et al. // J. Mol. Struct. 2018. V. 1152. P. 344. https://doi.org/10.1016/j.molstruc.2017.09.054
- 17. Zhang X., Chi Z., Zhang Y. et al. // J. Mater. Chem. C. 2013. V. 1. P. 3376. https://doi.org/10.1039/c3tc30316k
- 18. Ali A., Pervaiz M., Saeed Z. et al. // Inorg. Chem. Commun. 2022. V. 145. P. 109903. https://doi.org/10.1016/j.inoche.2022.109903
- 19. Farfán R.A., Britos M.L., Gómez M.I. et al. // J. Mol. Struct. 2022. V. 1258. P. 132654. https://doi.org/10.1016/j.molstruc.2022.132654
- 20. Pervaiz M., Sadiq A., Sadiq S. et al. // Inorg. Chem. Commun. 2022. V. 137. P. 109206. https://doi.org/10.1016/j.inoche.2022.109206
- 21. Pellei M., Bello F.D., Porchia M., Santini C. // Coord. Chem. Rev. 2021. V. 445. P. 214088. https://doi.org/10.1016/j.ccr.2021.214088
- 22. Kumar N., Roopa, Bhalla V., Kumar M. // Coord. Chem. Rev. 2021. V. 427. P. 213550. https://doi.org/10.1016/j.ccr.2020.213550
- 23. Tarushi A., Totta X., Papadopoulos A. et al. // Eur. J. Med. Chem. 2014. V. 74. P. 187. https://doi.org/10.1016/j.ejmech.2013.12.019
- 24. Bazhin D.N., Chizhov D.L., Röschenthaler G.-V. et al. // Tetrahedron Lett. 2014. V. 55. № 42. P. 5714. https://doi.org/10.1016/j.tetlet.2014.08.046
- 25. Edilova Y.O., Kudyakova Y.S., Kiskin M.A et al. // J. Fluor. Chem. 2022. V. 253. P. 109932. https://doi.org/10.1016/j.jfluchem.2021.109932
- 26. Bazhin D.N., Kudyakova Y.S., Röschenthaler G.-V et al. // Eur. J. Org. Chem. 2015. P. 5236. https://doi.org/10.1002/ejoc.201500737
- 27. Кудякова Ю.С., Оноприенко А.Я., Слепухин П.А. и др. // Химия гетероцикл. соед. 2019. Т. 55. С. 517.
- 28. Kudyakova Y.S., Onoprienko A.Y., Slepukhin P.A. et al. // Chem. Heterocycl. Comp. 2019. V. 55. P. 517.https://doi.org/10.1007/s10593-019-02488-4
- 29. Bazhin D.N., Kudyakova Y.S., Slepukhin P.A. et al. // Mendeleev Commun. 2018. V. 26. P. 54. https://doi.org/10.1016/j.mencom.2018.03.032
- 30. Бажин Д.Н., Кудякова Ю.С., Эдилова Ю.О. и др. // Изв. АН. Сер. хим. 2022. Т. 71. № 7. С. 1321.
- 31. Bazhin D.N., Kudyakova Y.S., Edilova Y.O et al. // Russ. Chem. Bull. 2022. V. 71. P. 1321. https://doi.org/10.1007/s11172-022-3539-6
- 32. Gorbunova M.G., Gerus I.I., Kukhar V.P. // Synthesis. 2000. P. 738. https://doi.org/10.1055/s-2000-6386
- 33. Dolomanov O.V., Bourhis L.J., Gildea R.J et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 34. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
- 35. Mittersteiner M., Bonacorso H.G., Martins M.A.P., Zanatta N. // Eur. J. Org. Chem. 2021. P. 3886. https://doi.org/10.1002/ejoc.202100495
- 36. Kudyakova Y.S., Bazhin D.N, Goryaeva M.V. et al. // Russ. Chem. Rev. 2014. V. 83. P. 120. https://doi.org/10.1070/RC2014v083n02ABEH004388
- 37. Llunell M., Casanova D., Cirera J., et al. SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. V. 2.1. Barcelona, 2013.