RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Fluorine-Containing Polydentate Bis(heterocycles) Based on Di- And Triketone Analogs in the Synthesis of Zinc(II) Complexes

PII
S0132344X25010054-1
DOI
10.31857/S0132344X25010054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
41-50
Abstract
An approach to the synthesis of polydentate ligands in which the NH-pyrazole cycle is connected by the hydrazone group to the azine fragment (pyridine or pyrimidine) is developed. In the reactions with zinc(II) chloride, the synthesized bis(heterocyclic) compounds act as tridentate ligands with the formation of mononuclear complexes Zn(L)Cl2 (CIF files CCDC nos. 2352630 (I) and 2352631 (II)). The absolute quantum yield (QY = 12%) and fluorescence lifetime (τ = 2.64 ns) are measured for complex II containing the pyridine cycle as the azine fragment.
Keywords
фторированные пиразолы пиримидин пиридин конденсация УФ спектроскопия
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. He L., Duan L., Qiao J. et al. // Adv. Funct. Mater. 2008. V. 18. P. 2123. https://doi.org/10.1002/adfm.200701505
  2. 2. Dolinar B.S., Alexandropoulos D.I., Vignesh K.R. // J. Am. Chem. Soc. 2018. V. 140. P. 908. https://doi.org/10.1021/jacs.7b12495
  3. 3. Bryleva Yu.A., Glinskaya L.A., Agafontsev A.M. et al. // J. Struct. Chem. 2020. V. 61. P. 1810. https://doi.org/10.1134/S0022476619080110
  4. 4. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Inorg. Chim. Acta. 2023. V. 547. P. 121359. https://doi.org/10.1016/j.ica.2022.121359
  5. 5. Zhu Z.-L., Gnanasekaran P., Yan J., Zheng Z. et al. // Inorg. Chem. 2022. V. 61. P. 8898. https://doi.org/10.1021/acs.inorgchem.2c01026
  6. 6. Yeh H.-H., Ho S.-T., Chi Y.P. et al. // J. Mater. Chem. A. 2013. V. 1. P. 7681. https://doi.org/10.1039/C3TA10988G
  7. 7. Lu C.-W., Wang Y., Chi Y. // Chem. Eur. J. 2016. V. 22. P. 17892. https://doi.org/:10.1002/chem.201601216
  8. 8. Hirahara M., Iwamoto A., Teraoka Y.P. et al. // Inorg. Chem. 2024. V. 63. P. 1988. https://doi.org/10.1021/acs.inorgchem.3c03716
  9. 9. Berkbigler G., Liu Q., Hoefer N. et al. // Eur. J. Inorg. Chem. 2024. P. e202300548. https://doi.org/10.1002/ejic.202300548
  10. 10. Parshad M., Kumar D., Verma V. // Inorg. Chim. Acta. 2024. V. 560. P. 121789. https://doi.org/10.1016/j.ica.2023.121789
  11. 11. Kapustina A., Tupolova Y.P., Popov L.D. et al. // Dalton Trans. 2024. V. 53. P. 3330. https://doi.org/10.1039/D3DT03750A
  12. 12. Saloutin V.I., Edilova Y.O., Kudyakova Y.S. et al. // Molecules. 2022. V. 27. 7894. https://doi.org/10.3390/molecules27227894
  13. 13. Yan Y.-B., Yang R.-W., Zhang H.-W. et al. // J. Mol. Struct. 2024. V. 1299. P. 137148. https://doi.org/10.1016/j.molstruc.2023.137148
  14. 14. Barbieri A., Accorsi G., Armaroli N. // Chem. Commun. 2008. P. 2185. https://doi.org/10.1039/b716650h
  15. 15. Alam P., Climent C., Alemany P., Laskar I.R. // J. Photochem. Photobiol. C. 2019. V. 41. P. 100317. https://doi.org/10.1016/j.jphotochemrev.2019.100317
  16. 16. Tong X.-L., Xiong C., Lin J.-Q. et al. // J. Mol. Struct. 2018. V. 1152. P. 344. https://doi.org/10.1016/j.molstruc.2017.09.054
  17. 17. Zhang X., Chi Z., Zhang Y. et al. // J. Mater. Chem. C. 2013. V. 1. P. 3376. https://doi.org/10.1039/c3tc30316k
  18. 18. Ali A., Pervaiz M., Saeed Z. et al. // Inorg. Chem. Commun. 2022. V. 145. P. 109903. https://doi.org/10.1016/j.inoche.2022.109903
  19. 19. Farfán R.A., Britos M.L., Gómez M.I. et al. // J. Mol. Struct. 2022. V. 1258. P. 132654. https://doi.org/10.1016/j.molstruc.2022.132654
  20. 20. Pervaiz M., Sadiq A., Sadiq S. et al. // Inorg. Chem. Commun. 2022. V. 137. P. 109206. https://doi.org/10.1016/j.inoche.2022.109206
  21. 21. Pellei M., Bello F.D., Porchia M., Santini C. // Coord. Chem. Rev. 2021. V. 445. P. 214088. https://doi.org/10.1016/j.ccr.2021.214088
  22. 22. Kumar N., Roopa, Bhalla V., Kumar M. // Coord. Chem. Rev. 2021. V. 427. P. 213550. https://doi.org/10.1016/j.ccr.2020.213550
  23. 23. Tarushi A., Totta X., Papadopoulos A. et al. // Eur. J. Med. Chem. 2014. V. 74. P. 187. https://doi.org/10.1016/j.ejmech.2013.12.019
  24. 24. Bazhin D.N., Chizhov D.L., Röschenthaler G.-V. et al. // Tetrahedron Lett. 2014. V. 55. № 42. P. 5714. https://doi.org/10.1016/j.tetlet.2014.08.046
  25. 25. Edilova Y.O., Kudyakova Y.S., Kiskin M.A et al. // J. Fluor. Chem. 2022. V. 253. P. 109932. https://doi.org/10.1016/j.jfluchem.2021.109932
  26. 26. Bazhin D.N., Kudyakova Y.S., Röschenthaler G.-V et al. // Eur. J. Org. Chem. 2015. P. 5236. https://doi.org/10.1002/ejoc.201500737
  27. 27. Кудякова Ю.С., Оноприенко А.Я., Слепухин П.А. и др. // Химия гетероцикл. соед. 2019. Т. 55. С. 517.
  28. 28. Kudyakova Y.S., Onoprienko A.Y., Slepukhin P.A. et al. // Chem. Heterocycl. Comp. 2019. V. 55. P. 517.https://doi.org/10.1007/s10593-019-02488-4
  29. 29. Bazhin D.N., Kudyakova Y.S., Slepukhin P.A. et al. // Mendeleev Commun. 2018. V. 26. P. 54. https://doi.org/10.1016/j.mencom.2018.03.032
  30. 30. Бажин Д.Н., Кудякова Ю.С., Эдилова Ю.О. и др. // Изв. АН. Сер. хим. 2022. Т. 71. № 7. С. 1321.
  31. 31. Bazhin D.N., Kudyakova Y.S., Edilova Y.O et al. // Russ. Chem. Bull. 2022. V. 71. P. 1321. https://doi.org/10.1007/s11172-022-3539-6
  32. 32. Gorbunova M.G., Gerus I.I., Kukhar V.P. // Synthesis. 2000. P. 738. https://doi.org/10.1055/s-2000-6386
  33. 33. Dolomanov O.V., Bourhis L.J., Gildea R.J et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  34. 34. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
  35. 35. Mittersteiner M., Bonacorso H.G., Martins M.A.P., Zanatta N. // Eur. J. Org. Chem. 2021. P. 3886. https://doi.org/10.1002/ejoc.202100495
  36. 36. Kudyakova Y.S., Bazhin D.N, Goryaeva M.V. et al. // Russ. Chem. Rev. 2014. V. 83. P. 120. https://doi.org/10.1070/RC2014v083n02ABEH004388
  37. 37. Llunell M., Casanova D., Cirera J., et al. SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. V. 2.1. Barcelona, 2013.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library