RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Synthesis of neutral binuclear two-chain helicate from the anionic Fe(III) complex of 5-chlorosalicylaldehyde thiosemicarbazone by electrocrystallization

PII
S0132344X25040068-1
DOI
10.31857/S0132344X25040068
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
265-276
Abstract
The electrocrystallization of salts of the anionic spin-variable complex [FeIII(L)2] (L is 5-chlorosalicylaldehyde thiosemicarbazone (Н25Cl-thsa)) with cations Cat+ = K+ (I), Me4N+ (II), and Et4N+ (III) affords crystals of the neutral binuclear two-chain helicate [FeIII2(L1)2]0 (IV) (L1 = (L‒2)‒(L) are transformed monoanionic and dianionic fragments of L, respectively, linked with each other by the disulfide S–S bridge), which are identified by XRD at 100 and 293 K as the same phase IV · n(H2O) (n ≤ 6) with close lattice parameters. “Fresh” crystals of the complex obtained from salt I correspond to the composition IV · 6(H2O) at 293 K, rapidly lose 50% water molecules, and decrepitate to fine crystalline fragments IV · 3(H2O). The structure of crystals IV · 6(H2O) is monoclinic (space group С2/c) and characterized by cavities filled with disordered water molecules, which amount to more than 20% of the total unit cell volume. Complex IV has the point symmetry group С2 and high-spin geometry of coordination nodes N4O2. As found by cyclic voltammetry, electrochemically inactive complex IV is formed by the two-electron oxidation of the [FeIII(5Cl-thsa)2] anion via the EEC mechanism.
Keywords
спин-переменные комплексы железа(III) тиосемикарбазон 5-хлорсалицилальдегид нейтральный биядерный геликат дисульфидные S–S-мостики электрокристаллизация
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. van Koningsbruggen P.J., Maeda Y., Oshio H. // Top. Curr. Chem. 2004. V. 233. P. 259.
  2. 2. Li Z.-Y., Dai J.-W., Shiota Y. et al. // Chem. Eur. J. 2013. V. 19. № 39. P. 12948.
  3. 3. Jeong H., Kang Y., Kim J. // RSC Adv. 2019. V. 9. № 16. P. 9049.
  4. 4. Heffetera P., Pape V. F.S., Enyedy E.A. et al. // Antioxidants & Redox Signaling. 2019. V. 30. № 8. P. 1.
  5. 5. Chang T.M., Tomat E. // Dalton Trans. 2013. V. 42. № 22. P. 7846.
  6. 6. Pedrido R., Romero M.J., Bermejo M.R. et al. // Chem. Eur. J. 2008. V. 14. № 2. P. 500.
  7. 7. Leovac V. M., Bjelica L., Jovanović L. // Polyhedron. 1985. V. 4. P. 233.
  8. 8. Kaya B., Kaya K., Koca A. et al. // Polyhedron. 2019. V. 173. P. 114130.
  9. 9. Blagov M., Spitsyna N., Lazarenko V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 23. P. e202300239.
  10. 10. Cambridge Structural Database System. Version 3.0, 2021. https://www.ccdc.cam.ac.uk/
  11. 11. Fujinami T., Nishi K., Kitashima R. et al. // Inorg. Chim. Acta. 2011. V. 376. P. 136.
  12. 12. CrysAlisPro. Version 1.171.38. Rigaku Oxford Diffraction, 2015.
  13. 13. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184.
  14. 14. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
  15. 15. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  16. 16. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  17. 17. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
  18. 18. Зеленцов В.В., Аблов А.В., Турта К.И. и др. // Журн. неорган. хим. 1972. Т. 17. № 7. С. 1929.
  19. 19. Spitsyna N.G., Blagov M.A., Lazarenko V.A. et al. // Inorg. Chem. 2021. V. 60. № 23. P. 17462.
  20. 20. Krivenko A. G., Manzhos R. A., Kochergin V. K. // Russ. J. Electrochem. 2019. V. 55. № 7. P. 663.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library