RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

On the interaction of copper(II) complexes Cu(Gly)20, Cu(Bipy)Gly+ and Cu(Bipy)22+ with glutathione

PII
S0132344X25060033-1
DOI
10.31857/S0132344X25060033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 6
Pages
377-386
Abstract
The interaction of three copper(II) complexes — Cu(Gly)20, Cu(Bipy)22+, and Cu(Bipy)Gly+ — with glutathione in aqueous solution (pH 7.4, 0.2 M NaCl, 25°C, сCu = (1–10) × 10–4, сGSH = 1.0 × 10–3 M) was studied. These and similar complexes are often used in biological experiments to test anticancer and antimicrobial activity. It was shown that under physiological conditions copper(II) complexes are almost irreversibly converted into a more stable form of copper(I) thiolate complexes. The individuality of the initial complexes is completely lost. In all cases, the redox interaction of the copper(II) complexes with glutathione was rapid and quantitative. The main products were copper(I) bisthiolate complex and glutathione disulfide.
Keywords
медь(I комплексы медь(II комплексы тиолы глутатион редокс-процессы
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Freedman J.H., Ciriolo M.R., Peisach J. // J. Biol. Chem. 1989. V. 264. № 10. P. 5598.
  2. 2. Кошенскова К.А., Баравиков Д.Е., Нелюбина Ю.В. и др. // Коорд. химия. 2023. Т. 49. № 10. С. 632. https://doi.org/10.31857/S0132344X23600212 (Koshenskova K.A., Baravikov D.E., Nelyubina Yu.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 10. P. 660) https://doi.org/10.1134/S1070328423600730
  3. 3. Śliwa E.I., Śliwińska-Hill U., Bażanów B. et al. // Molecules. 2020. V. 25. № 3. P. 741.
  4. 4. Ruiz-Azuara L., Bravo-Gómez M.E. // Curr. Med. Chem. 2010. V. 17. P. 3606.
  5. 5. Eremina J.A., Lider E.V., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2021. V. 516. Art. 120169.
  6. 6. Shakirova O.G., Morozova T.D., Kudyakova Y.S. et al. // Int. J. Mol. Sci. 2024. V. 25. P. 9414.
  7. 7. Eremina J.A., Smirnova K.S., Klyushova L.S. et al. // J. Mol. Struct. 2021. V. 1245. Art. 131024.
  8. 8. Speisky H., Gómez M., Carrasco-Pozo C. et al. // Bioorg. Med. Chem. 2008. V. 16. P. 6568.
  9. 9. Galindo-Murillo R., García-Ramos J.C., Ruiz-Azuara L. et al. // Nucleic Acids Res. 2015. V. 43. № 11. P. 5364.
  10. 10. Casini A., Kelter G., Gabbiani C. et al. // J. Biol. Inorg. Chem. 2009. V. 14. P. 1139.
  11. 11. Gorini G., Magherini F., Fiaschi T. et al. // Biomedicines. 2021. V. 9. P. 871.
  12. 12. Fernandez-Moreira V., Herrera R.P., Gimeno M.C. // Pure. Appl. Chem. 2018. V. 91. P. 247.
  13. 13. Mironov I.V., Kharlamova V.Yu. // ChemistrySelect. 2023. V. 8. Art. e202301337.
  14. 14. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1495. https://doi.org/10.31857/S0044457X23600639 (Mironov I.V., Kharlamova V.Yu. // Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1487). https://doi.org/10.1134/S003602362360185X
  15. 15. Crmarić D., Bura-Nakić E. // Molecules. 2023. V. 28. P. 5065.
  16. 16. Rigo A., Corazza A., di Paolo M.L. et al. // J. Inorg. Biochem. 2004. V. 98. P. 1495.
  17. 17. Smith R.C., Reed V.D., Hill W.E. // Phosphorus, Sulfur, Silicon Relat. Elem. 1994. V. 90. P. 147.
  18. 18. Карякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Химия, 1974. С. 235.
  19. 19. Bratsch S.G. // J. Phys. Chem. Ref. Data. 1989. V. 18. № 1. P. 1.
  20. 20. Jocelyn P.C. // Eur. J. Biochem. 1967. V. 2. P. 327.
  21. 21. Walsh M.J., Ahner B.A. // J. Inorg. Biochem. 2013. V. 128. P. 112.
  22. 22. Österberg R., Ligaarden R., Persson D. // J. Inorg. Biochem. 1979. V. 10. P. 341.
  23. 23. Königsberger L.-C., Königsberger E., Hefter G. et al. // Dalton Trans. 2015. V. 44. P. 20413.
  24. 24. Perrin D.D. Stability сonstants of metal-ion complexes. Pt B: Organic ligands. New York: Pergamon Press, 1979. 1263 p.
  25. 25. Speisky H., Gómez M., Burgos-Bravo F. et al. // Bioorg. Med. Chem. 2009. V. 17. P. 1803.
  26. 26. Ngamchuea K., Batchelor-McAuley C., Compton R.G. // Chem. Eur. J. 2016. V. 22. № 44. P. 15937.
  27. 27. Drochioiu G., Ion L., Ciobanu C. et al. // Eur. J. Mass Spectrom. 2013. V. 19. P. 71.
  28. 28. Aliaga M.E., López-Alarcón C., Bridi R. et al. // J. Inorg. Biochem. 2016. V. 154. P. 78.
  29. 29. Багиян Г.А., Королева И.К., Сорока Н.В. и др. // Кинетика и катализ. 2004. Т. 45. № 3. С. 398 (Bagiyan G.A., Koroleva I.K., Soroka N.V. et al. // Kinet. Catal. 2004. V. 45. № 3. P. 372). https://doi.org/10.1023/B:KICA.0000032171.81652.91
  30. 30. Mejia C., Ruiz-Azuara L. // Pathol. Oncol. Res. 2008. V. 14. P. 467.
  31. 31. Griesser R., Sigel H. // Inorg. Chem. V. 9. № 5. P. 1238.
  32. 32. Raydan D., Rivas-Lacre I.J., Lubes V. et al. // J. Mol. Liq. 2020. V. 302. Art. 112595.
  33. 33. Seko H., Tsuge K., Igashira-Kamiyama A. et al. // Chem. Commun. 2010. V. 46. P. 1962.
  34. 34. Huang R., Wallqvist A., Covell D.G. // Biochem. Pharmacol. 2005. V. 69. P. 1009.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library