RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Heterometallic complex of Europium(III) trifluoroacetate with bis(diphenylphosphoryl)ferrocene (DppfO2): synthesis, structure and thermal stability

PII
S0132344X25060061-1
DOI
10.31857/S0132344X25060061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 6
Pages
411-419
Abstract
A new bimetallic complex [Eu2(OOCCF3)6(H2O)2(dppfO2)2] (I) was obtained by the reaction of aqueous europium(III) trifluoroacetate with bis(diphenylphosphoryl)ferrocene (DppfO2) in a solvent mixture of tetrahydrofuran-benzene (1 : 1), and characterized by X-ray diffraction (CCDC No. 2425374), IR spectroscopy, and elemental analysis. According to the X-ray analysis data, compound I is a molecular complex in which two europium atoms are connected by bridging water molecules and trifluoroacetate anions, and terminal DppfO2 molecules are coordinated chelately. According to the STA data, the complex is thermally stable up to 200°C, its decomposition is accompanied by an exothermic effect at 285°C associated with the desorption of four trifluoroacetic acid molecules.
Keywords
трифторацетат европия ферроцен кристаллическая структура термолиз гетерометаллические комплексы
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Yang Q., Tang J. // Dalton Trans. 2019. V. 48. P. 769. https://doi.org/10.1039/C8DT04243H
  2. 2. Li Y., Yang Y.D., Ge R. et al. // Inorg. Chem. 2022. V. 61. № 23. P. 8746.
  3. 3. Никифорова М.Е., Кискин М.А., Сидоров А.А. // Коорд. химия. 2024. Т. 50. № 11. С. 914 (Nikiforova M.E., Kiskin M.A., Sidorov A.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 11. P. 914). https://doi.org/10.1134/S1070328424600839
  4. 4. López-Hernández J.E., Contel M. // Current opinion in chemical biology. 2023. V. 72. P. 102250. https://doi.org/10.1016/j.cbpa.2022.102250
  5. 5. Abd-El-Aziz A.S., Manners I. // John Wiley & Sons. 2007. V. 51. P. 46.
  6. 6. Chandrasekhar V., Chakraborty A., Sañudo E.C. // Dalton Trans. 2013. V. 42. P. 13436.
  7. 7. Yakushev I.A., Ogarkova N.K., Khramov E.V. et al. // Mendeleev Commun. 2023. V. 33. № 4. P. 487. http://dx.doi.org/10.1016/j.mencom.2023.06.015
  8. 8. Шаповалов С.С., Скабицкий И.В. // Коорд. химия. 2021. Т. 47. С. 288 (Shapovalov S.S., Skabitskii I.V. // Russ. J. Coord. Chem. 2021. V. 47. P. 330). https://doi.org/10.1134/S1070328421050055
  9. 9. Уварова М.А., Нефедов С.Е. // Коорд. химия. 2022. Т. 48. С. 543 (Uvarova M.A., Nefedov S.E. // Russ. J. Coord. Chem. 2022. V. 48. P. 565.) https://doi.org/10.1134/S107032842209007X
  10. 10. Уварова М.А., Гринева А.А., Датчук Р.Р. и др. //Журн. неорган. химии. 2018. Т. 63. С. 587 (Uvarova M.A., Grineva A.A., Datchuk R.R. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 618). https://doi.org/10.1134/S0036023618050108
  11. 11. Уварова М.А., Нефедов С.Е. // Журн. неорган. химии. 2021. Т. 66. С. 1538 (Uvarova M.A., Nefedov S.Е. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 660). http://dx.doi.org/10.1134/S0036023621110218
  12. 12. Уварова М.А., Агешина А.А., Нефедов С.Е. // Журн. неорган. химии. 2015. Т. 60. С. 1326 (Uvarova M.A., Ageshina A.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2015. V. 60 P. 1210). https://doi.org/10.1134/S0036023615100198
  13. 13. Уварова М.А., Агешина А.А., Нефедов С.Е. // Журн. неорган. химии. 2015. Т. 60. № 5. С. 533 (Uvarova M.A., Ageshina A.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2015. V. 60. № 5. P. 566). https://doi.org/10.1134/S0036023615050186
  14. 14. Агешина А.А., Уварова М.А., Нефедов С.Е. // Журн. неорган. химии. 2015. Т. 60. № 10. С. 1334 (Ageshina A.A., Uvarova M.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2015. V. 60. № 10. P. 1218). http://dx.doi.org/10.1134/S0036023615100022
  15. 15. Koroteev P.S., Dobrokhotova,Z.V., Ilyukhin A.B. et al. // Dalton Trans..2021. V. 50. P. 16990. http://dx.doi.org/10.1039/d1dt02562g
  16. 16. Uvarova M.A., Shmelev M.A., Bekker O.B. et al. // New J. Chem. 2024. V. 48. P. 17391. http://dx.doi.org/10.1039/d4nj03598d
  17. 17. Packheiser R., Ecorchard P., Walfort B. et al. // J. Organomet. Chem. 2008. V. 693. P. 933. http://dx.doi.org/10.1016/j.jorganchem.2007.11.052
  18. 18. Zeng M., Hu K.Q., Liu C.M. et al. // Dalton Trans. 2021. V. 50. P. 6427. https://doi.org/10.1039/D1DT00693B
  19. 19. Liberka M., Zychowicz M., Chorazy S. // Inorg. Chem. Front. 2024. V. 11. P. 2081. https://doi.org/10.1039/D4QI00138A
  20. 20. Horikoshi R., Mochida T. // Eur. J. Inorg. Chem. 2010. V. 34. P. 5355. https://doi.org/10.1002/ejic.201000525
  21. 21. Platt A.W. // Coord. Chem. Rev. 2017. V. 340. P. 62. http://dx.doi.org/10.1016/j.ccr.2016.09.012
  22. 22. Anand A.V., Perinbanathan S., Singh I. et al. // ChemCatChem. 2024. V. 16. https://doi.org/10.1002/cctc.202400844
  23. 23. Kukkonen E., Virtanen E.J., Moilanen J.O. // Molecules. 2022. V.27. P. 3465. https://doi.org/10.3390/molecules27113465
  24. 24. Bryleva Y.A., Rakhmanova M.I., Artem'ev A.V. et al. // New J. Chem. 2024. V. 48. P. 6430. https://doi.org/10.1039/D4NJ00617H
  25. 25. Bryleva Y.A., Artem’ev A.V., Glinskaya L.A. et al // New J. Chem. 2021. V. 45. № 31. P. 13869. https://doi.org/10.1039/D1NJ02441H
  26. 26. Bryleva Y.A., Komarov V.Y., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. № 21. P. 10446. https://doi.org/10.1039/D3NJ01119D
  27. 27. Zhang W., Hor T.A. // Dalton Trans. 2011. V. 40 P. 10725. https://doi.org/10.1039/C1DT10920K
  28. 28. Aviles T., Dinis A., Gonçalves J.O. et al. // Dalton Trans. 2022. V. 24. P. 4595. https://doi.org/10.1039/B205942H
  29. 29. Pilloni G., Valle G., Corvaja C. et al. // Inorg. Chem. 1995. V. 34. P. 5910. https://doi.org/10.1021/ic00127a032
  30. 30. Spichal Z., Hegrova B., Moravec Z. et al. // Polyhedron. 2011. V. 30. P. 1620. http://dx.doi.org/10.1016/j.poly.2011.03.027
  31. 31. Buckley-Dhoot E., Fawcett J., Kresinski R.A. et al. // Polyhedron. 2009. V. 28. P. 1497. http://dx.doi.org/10.1016/j.poly.2009.02.028
  32. 32. Shmelev M.A., Melnikov S.N., Nikolaevskii S.A. et al. // Appl. Organomet. Chem. 2024. V. 39. Art. e7836. http://dx.doi.org/10.1002/aoc.7836
  33. 33. Lutsenko I.A., Kiskin M.A., Nikolaevskii S. A. et al. // Chem. Select. 2019. V. 4. № 48. P. 14261. http://dx.doi.org/10.1002/slct.201904585
  34. 34. Coluccini C., Sharma A.K., Merli D. et al. // Dalton Trans. 2011. V.40. P. 11719. https://doi.org/10.1039/C1DT11031D
  35. 35. Yuan Y.F., Cardinaels T., Lunstroot K. et al. // Inorg. Chem. 2007. V. 46. P. 5302. https://doi.org/10.1021/ic070303v
  36. 36. Khalladi A., Kovalski E., Abdulmalic M.A. et al. // Dalton Trans. 2023. V. 52. P.17717. https://doi.org/10.1039/D3DT00812F
  37. 37. Uvarova M.A., Dolgushin F.M., Metlin M.T. et al. // New J. Chem. 2025. V. 49. P. 3236. https://doi.org/10.1039/D4NJ05283H
  38. 38. Uvarova M.A., Taidakov I.V., Shmelev M.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. P.784. https://doi.org/10.1134/S1070328423600882
  39. 39. Munasinghe H.N., Szlag R.G., Imer M.R. et al. // Inorg. Chem. 2022. V. 61. P. 5588. https://doi.org/10.1021/acs.inorgchem.2c00196
  40. 40. Уварова М.А., Нефедов С.Е. // Журн. неорган. химии. 2021. Т. 66. С. 1713 (Uvarova M.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1837). https://doi.org/10.1134/S0036023621120202
  41. 41. Уварова М.А., Нефедов С.Е. // Журн. неорган. химии. 2021. Т. 66. С. 737 (Uvarova M.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2021. V. 66. P. 839). https://doi.org/10.1134/S0036023621060206
  42. 42. Korshunov V.M., Kiskin M.A., Taydakov I.V. // J. Lumin. 2022. V. 251. P. 119235. https://doi.org/10.1016/j.jlumin.2022.119235
  43. 43. Gogoleva N.V., Shmelev M.A., Chistyakov A.S. et al. // Mend. Commun. 2024. V. 34. P. 484. https://doi.org/10.1016/j.mencom.2024.06.005
  44. 44. Bolot'ko A.Y., Shmelev M.A., Chistyakov A.S. et al. // Dalton Trans. 2025. https://doi.org/10.1039/D4DT03414G
  45. 45. Fang Z.G, Hor T.S. A., Wen Y.S. et al. // Polyhedron. 1995. V. 14. P. 2403. https://doi.org/10.1016/0277-5387 (95)00072-Z
  46. 46. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  47. 47. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  48. 48. Casanova D., Llunell M., Alemany P. et al. // Chem. Eur. J. 2005. V. 11. P. 1479. https://doi.org/10.1002/chem.200400799
  49. 49. Thomas S.P., Spackman P.R., Jayatilaka D. et al. // J. Chem. Theor. Comput. 2018. V. 14. P. 1614. https://doi.org/10.1021/acs.jctc.7b01200
  50. 50. Букветский Б.В., Калиновская И.В. // Журн. oбщ. химии. 2013. Т. 83. С. 230 (Bukvetskii B.V., Kalinovskaya I.V. // Russ. J. Gen. Chem. 2013. V. 83. P. 284). https://doi.org/10.1134/S1070363213020096
  51. 51. Коротеев П.С., Доброхотова Ж.В., Ефимов Н.Н. и др. // Коорд. химия. 2014. Т. 40. № 7. С. 438 (Koroteev P.S., Dobrokhotova Z.V., Efimov N.N. et al. // Russ. J. Coord. Chem. 2014. V. 40. P. 495). https://doi.org/10.1134/S1070328414070045
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library