- PII
- S0132344X25070023-1
- DOI
- 10.31857/S0132344X25070023
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 52 / Issue number 7
- Pages
- 438-448
- Abstract
- The reactions of dibutyltin dichloride with potassium amides KNH-pap, KNH-pbt, and KNH-pbt (pap = 4-(phenylazo)phenyl; pbt = 1,3-benzothiazol-2-yl-4-phenyl; pbt = 1,3-benzothiazol-2-yl-2-phenyl) were studied. It was found that in the case of KNH-pap and KNH-pbt, the only products formed were stannanediamines BuSn(NH-pap) (I) and BuSn(NH-pbt) (II). However, in the case of KNH-pbt, an inseparable mixture of stannanediamine BuSn(NH-pbt) ( III) and cyclodistannadiazane [BuSn(N-pbt)] (IV) was obtained. The molecular structures of compounds I-IV were determined by single-crystal X-ray diffraction (SCXRD) analysis of the crystalline phases I · 0.5CH, II · 0.5THF, III, and IV (CCDC No 2367378 (I · 0.5CH), 2367379 (II · 0.5THF), 2367380 (III), and 2367378 (IV)).
- Keywords
- олово амиды лиганды синтез рентгеноструктурный анализ
- Date of publication
- 28.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Liu B., Li L., Sun G. et al. // Macromolecules. 2014. V. 47. № 15. P. 4971.
- 2. Liu B., Sun G., Li S. et al. // Organometallics. 2015. V. 34. № 16. P. 4063.
- 3. Lu D., Yu J.K., Kuo T. et al. // Angew. Chemie Int. Ed. 2011. V. 50. № 33. P. 7611.
- 4. Zhu X., Guo D., Zhang Y. et al. // Organometallics. 2020. V. 39. № 24. P. 4584.
- 5. Zhu X., Guo D., Zhang Y. et al. // Organometallics. 2009. V. 28. № 13. P. 3882.
- 6. Tazelaar C.G.J., Bambirra S., van Leusen D. et al. // Organometallics. 2004. V. 23. № 5. P. 936.
- 7. Mironova O.A., Lashchenko D.I., Ryadun A.A. et al. // New J. Chem. 2022. V. 46. № 5. P. 2351.
- 8. Баширов Д.А., Сухих Т.С., Конченко С.Н. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1211
- 9. Bashirov D.A., Sukhikh T.S., Konchenko S.N // Russ. J. Inorg. Chem. 2023. V. 68. № 9. P. 1211). https://doi.org/10.31857/S0044457X23601025
- 10. Mironova O.A., Ryadun A.A., Sukhikh T.S. et al. // New J. Chem. 2023. Vol. 47. № 7. P. 3406.
- 11. Mironova O. A., Ryadun A.A., Pushkarevsky N.A. et al. // J. Struct. Chem. 2024. V. 65. № 2. P. 399.
- 12. Jones K., Lappert M.F. // J. Chem. Soc. 1965. P. 1944.
- 13. Дергунов Ю.И., Герега В.Ф., Дьячковская О.С. // Успехи химии 1977. Т. 46. № 12. С. 2139
- 14. Dergunov Y.I., Gerega V.F., D’yachkovskaya O.S. // Russ. Chem. Rev. 1977. Vol. 46. № 12. P. 1132. https://doi.org/10.1070/RC1977v046n12ABEH002191
- 15. Baz F.El, Riviere-Baudet M., Chazalettte C. et al. // Phosphorus. Sulfur. Silicon Relat. Elem. 2000. V. 163. № 1. P. 121.
- 16. Padělková Z., Havlík A., Švec P.et al. // J. Organomet. Chem. 2010. V. 695. № 24. P. 2651.
- 17. Afonin M.Y., Martynenko P.A., Kolybalov D.S. et al. // Inorg. Chem. 2024. V. 63. № 1. P. 369.
- 18. Bandara H.M.D., Burdette S.C. // Chem. Soc. Rev. 2012. V. 41. № 5. P. 1809.
- 19. Joshi N.K., Fuyuki M., Wada A. // J. Phys. Chem. B. 2014. V. 118. № 7. P. 1891-1899.
- 20. Gordon A.J., Ford R.A. The chemist’s companion: a handbook of practical data, techniques and references. New York, 1973, 560 p.
- 21. Zhang J., Guo W. // Chem. Commun. 2014. V. 50. № 32. P. 4214.
- 22. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
- 23. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- 24. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- 25. Diemer S., Noth H., Polborn K. et al. // Chem. Ber. 1992. V. 125. № 2. P. 389.
- 26. Junk P.C., Leary S.G. // Inorg. Chim. Acta. 2004. V. 357. № 7. P. 2195.
- 27. Schulz A., Thomas M., Villinger A. // Daltщт Trans. 2019. V. 48. № 1. P. 125.
- 28. Sawyer J.F. // Acta Crystallogr. C. 1988. V. 44. № 4. P. 633.
- 29. Schneider J., Krebs K.M., Freitag S. et al. // Chem. Eur. J. 2016. V. 22. № 28. P. 9812.
- 30. Fischer M., Roy M.M.D., Wales L.L. et al. // Angew. Chem. Int. Ed. 2022. V. 61. № 48. Art. e2022116.
- 31. Raharinirina A., Boese R., Schmid G. // J. Organomet. Chem. 1990. V. 395. № 1. P. 39.
- 32. Lichtscheidl A.G., Janicke M.T., Scott B.L. et al. // Dalton Trans. 2015. V. 4. № 36. P. 16156.
- 33. Fooken U., Saak W., Weidenbruch M. // J. Organomet. Chem. 1999. V. 579. № 1-2. P. 280.
- 34. Janiak C. // Dalton. Trans. 2000. № 21. P. 3885.
- 35. Piskunov A.V., Aivaz’yan I.A., Fukin G.K. et al. // Inorg. Chem. Commun. 2006. V. 9. № 6. P. 612.
- 36. Ладо A.В., Пискунов А.В., Черкасов В.К. и др. // Коорд. химия. 2006. Т. 32. № 3. С. 181
- 37. Lado A.V., Piskunov A.V., Cherkasov V.K. et al. // Russ. J. Coord. Chem. 2006. V. 32. № 3. P. 173. https://doi.org/10.1134/S1070328406030031
- 38. Lado A.V., Poddel’sky A.I., Piskunov A.V. et al. // Inorg. Chim. Acta. 2005. V. 358. № 15. P. 4443.
- 39. Seifert T., Storch W., Vosteen M. // Eur. J. Inorg. Chem. 1998. V. 1998. № 9. P. 1343.
- 40. Fuentes N., Martín-Lasanta A., Álvarez de Cienfuegos L. et al. // Nanoscale. 2011. V. 3. № 10. P. 4003.
- 41. Khisamov R.M., Ryadun A.A., Sukhikh T.S. et al. // Mol. Syst. Des. Eng. 2021. V. 6. № 12. P. 1056.