- PII
- S0132344X25070036-1
- DOI
- 10.31857/S0132344X25070036
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 52 / Issue number 7
- Pages
- 449-455
- Abstract
- A carbonyl-isonitrile complex of [Re(CO)₃(L)(m-XylylNC)]OTf formulation (-XylylNC - 2,6-dimethyl- phenyl isocyanide) was synthesized based on the 1,10-phenanthroline ligand (L) containing a menthol fragment (MtO-) in position 2. The Re(I) atom in the cationic part of this complex has a distorted octahedral environment formed by the N,N′-chelate ligand L, one isonitrile ligand, and three CO ligands. The resulting compound exhibits bright green phosphorescence at room temperature in both the solid state and solution, with quantum yields of 15% and 10%, respectively.
- Keywords
- трикарбонильные комплексы рения(I) изонитрилы фосфоресценция синтез кристаллическая структура
- Date of publication
- 28.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Kirgan R.A., Sullivan B.P., Rillema D.P. // Photochemistry and photophysics of coordination compounds II / Eds. Balzani V., Campagna S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 45.
- 2. Abramov P.A., Dmitriev A.A., Kholin K.V. et al. // Electrochim. Acta. 2018, V. 270. P. 526. https://doi.org/10.1016/j.electacta.2018.03.111
- 3. Abramov P.A., Brylev K.A., Vorob’ev A.Y. et al. // Polyhedron. 2017. V. 137. P. 231. https://doi.org/10.1016/j.poly.2017.08.046
- 4. Абрамов П.А. // Журн. структур. химии. 2021 V. 62. P. 1513. https://doi.org/10.26902/JSC_id79933
- 5. Abramov P.A. // J. Struct. Chem. 2021. V. 62. P. 1416. https://doi.org/10.1134/S0022476621090109.
- 6. Abramov P.A., Gritsan N.P., Suturina E. A. et al. // Inorg. Chem. 2015. V. 54. P. 6727. https://doi.org/10.1021/acs.inorgchem.5b00407
- 7. Nayeri S., Jamali S., Pavlovskiy V.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 4350. https://doi.org/10.1002/ejic.201900617
- 8. Shakirova J.R., Nayeri S., Jamali S. et al. // ChemPlusChem. 2020. V. 85. P. 2518. https://doi.org/10.1002/cplu.202000597
- 9. Kisel K.S., Baigildin V.A., Solomatina A.I. et al. // Molecules. 2023. V. 28. P. 348. https://doi.org/10.3390/molecules28010348
- 10. Kisel K.S., Shakirova J.R., Pavlovskiy V.V. et al. // Inorg. Chem. 2023. V. 62. P. 18625. https://doi.org/10.1021/acs.inorgchem.3c02915
- 11. Kisel K.S., Eskelinen T., Zafar W. et al. // Inorg. Chem. 2018. V. 57. P. 6349. https://doi.org/10.1021/acs.inorgchem.8b00422
- 12. Kalyanasundaram K. // Faraday Trans. 2. 1986. V. 82. P. 2401. https://doi.org/10.1039/F29868202401
- 13. Yu T., Tsang D.P.-K., Au V. K.-M. et al. // Chem. Eur. J. 2013. V. 19. P. 13418. https://doi.org/10.1002/chem.201301841
- 14. Sacksteder L., Lee M., Demas J. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 8230. https://doi.org/10.1021/ja00071a036
- 15. Villegas J.M., Stoyanov S.R., Huang W. et al. // Inorg. Chem. 2005 V. 44. P. 2297. https://doi.org/10.1021/ic048786f
- 16. Favale J.M., Jr., Danilov E.O., Yarnell J E. et al. // Inorg. Chem. 2019 V. 58. P. 8750. https://doi.org/10.1021/acs.inorgchem.9b01155
- 17. Klemens T., Świtlicka A., Szlapa-Kula A. et al. // Organometallics. 2019. V. 38. P. 4206. https://doi.org/10.1021/acs.organomet.9b00517
- 18. Taydakov I.V., Vashchenko A.A., Lyssenko K.A. et al. // ARKIVOC. 2017. V. 2017, P. 205. https://doi.org/10.24820/ark.5550190.p010.130
- 19. Hostachy S., Policar C., Delsuc N. // Coord. Chem. Rev. 2017. V. 351. P. 172. https://doi.org/10.1016/j.ccr.2017.05.004
- 20. Chelushkin P.S., Shakirova J.R., Kritchenkov I.S. et al. // Dalton Trans. 2022 V. 51. P. 1257. https://doi.org/10.1039/D1DT03077A
- 21. Leonidova A., Gasser G. // ACS Chem. Biol. 2014. V.9. P. 2180. https://doi.org/10.1021/cb500528c
- 22. Lee L.C.-C., Leung K.-K., Lo K.K.-W. // Dalton Trans. 2017. V. 46. P. 16357. https://doi.org/10.1039/C7DT03465B
- 23. Kuninobu Y., Takai K. // Chem. Rev. 2011. V. 111. P. 1938. https://doi.org/10.1021/cr100241u
- 24. Kisel K.S., Samandarsangari M., Sokolov V.V. et al. // Opt. Mater. 2025. V. 159. P. 116589. https://doi.org/10.1016/j.optmat.2024.116589
- 25. Saleh N., Srebro M., Reynaldo T. et al. // Chem. Commun. 2015. V. 51. P. 3754. https://doi.org/10.1039/C5CC00453E
- 26. Gauthier E.S., Abella L., Hellou N. et al. // Angew. Chem. Int. Ed. 2020. V. 59 P. 8394. https://doi.org/10.1002/anie.202002387
- 27. Saleh N., Kundu D., Vanthuyne N. et al. // ChemPlusChem. 2020, Vol. 85, P. 2446. https://doi.org/10.1002/cplu.202000559
- 28. Gauthier E.S., Abella L., Caytan E. et al. // Chem. Eur. J. 2023, Vol. 29, P. e202203477. https://doi.org/10.1002/chem.202203477
- 29. Giuso V., Gourlaouen C., Delporte-Pébay M. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 4855. https://doi.org/10.1039/D3CP04300B
- 30. Kundu D., Jelonek D., Del Rio N. et al. // Chem. Asian J. год ? V. n/a. Аrt. e202401735. https://doi.org/10.1002/asia.202401735
- 31. Davydova M.P., Xu T., Agafontsev A.M. et al. // Angew. Chem. Int. Ed. 2025. V. 64. Аrt. e202419788. https://doi.org/10.1002/anie.202419788
- 32. Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT 8.40a. 2017. V. ? Bruker AXS Inc., Madison, WI, USA.
- 33. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 34. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 35. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42, P. 339. https://doi.org/10.1107/S0021889808042726
- 36. van der Sluis P., Spek A.L. // Acta Crystallogr. A. 1990. V. 46. P. 194. https://doi.org/10.1107/S0108767389011189
- 37. Ortega J.V., Khin K., van der Veer W.E. et al. // Inorg. Chem. 2000. V. 39. P. 3038. https://doi.org/10.1021/ic0006910
- 38. Aechter B., Knizek J., Nöth H. et al. // Z. Kristallogr. NCS. 2005. V. 220. P. 107. https://doi.org/10.1524/ncrs.2005.220.14.107
- 39. King A.P., Marker S.C., Swanda R.V. et al. // Chem. Eur. J. 2019. V. 25. P. 9206. https://doi.org/10.1002/chem.201902223
- 40. Ko C.-C., Ng C.-O., Yiu S.-M. // Organometallics. 2012. V. 31. P. 7074. https://doi.org/10.1021/om300526e
- 41. Marker S.C., King A.P., Granja S. et al. // Inorg. Chem. 2020. V. 59. P. 10285. https://doi.org/10.1021/acs.inorgchem.0c01442
- 42. Тюпина М.Ю., Мирославов А.Е., Сидоренко Г.В. и др. // Журн. общ. химии. 2022. V. 92. P. 110. https://doi.org/10.31857/S0044460X22010127
- 43. Tyupina M.Y., Miroslavov A.E., Sidorenko G.V. et al. // Russ. J. Gen. Chem. 2022, V. 92. P. 69. https://doi.org/10.1134/S1070363222010108.