- PII
- S0132344X25080011-1
- DOI
- 10.31857/S0132344X25080011
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 8
- Pages
- 487-500
- Abstract
- A series of substituted -iminobenzoquinones (6-((2,6-di--propylphenyl)imino)-2,4-(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L), 4-(-butyl)-6-((2,6-di--propylphenyl)imino)-3-methoxycyclohexa-2,4-dien-1-one (L) and 6-((2,6-di--propylphenyl)imino)-3-methoxy-4-(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L)) were used to synthesize indium(III) iodide complexes containing the redox-active ligand in its neutral form. The -iminobenzoquinone L was synthesized for the first time. It was found that the structure of the obtained complexes depends on the degree of steric shielding of the carbonyl oxygen atom in the initial -iminobenzoquinone. The sterically hindered ligand L forms a 1 : 1 adduct with InI (complex (L)InI (I)). The absence of a substituent at the 2-position of the -iminobenzoquinone ring promotes the formation of bis-ligand ionic derivatives {[(L)]InI}InI} (II) and {[(L)]InI}InI} (III). The molecular structures of L and complexes I - 0.5 toluene, II - toluene · 0.5 hexane were determined by X-ray diffraction analysis (CCDC № 2440874 (L), 2440875 (I · 0.5 toluene), 2440876 (II · toluene · 0.5 hexane)). The optical and electrochemical properties of the initial -iminobenzoquinones and indium(III) complexes based on them were studied. It is shown that activating complexation contributes to a significant enhancement of the oxidative properties of L, L and L.
- Keywords
- Array индий(III) редокс-активные лиганды УФ-спектроскопия циклическая вольтамперометрия
- Date of publication
- 23.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Абакумов Г.А., Каимов Е.С., Разуваев Г.А. // Изв. АН. Сер. хим. 1971. С. 1827.
- 2. Разуваев Г.А., Абакумов Г.А., Каимов Е.С. // Докл. АН СССР. 1971. V. 201. С. 624.
- 3. Абакумов Г.А., Каимов Е.С. // Докл. АН СССР. 1972. V. 202. С. 827.
- 4. Абакумов Г.А., Каимов Е.С., Ермаков В.В., Белосотская Е.С. // Изв. АН. Сер. хим. 1975. С. 927.
- 5. Brown M., McGarvey B., Tuck D. // Dalton Trans. 1998. P. 3543. https://doi.org/10.1039/A804124E
- 6. Boucher D., Brown M., McGarvey B., Tuck D. // Dalton Trans. 1999. P. 3445. https://doi.org/10.1039/A901758E
- 7. Abakumov G., Cherkasov V., Piskunov A.V. et al. // Chem. 2009. V. 427. P. 168.
- 8. Mondal M.K., Mukherjee C. // Dalton Trans. 2016. V. 45. P. 13532. https://doi.org/10.1039/C6DT02443B
- 9. Anga S., Paul M., Naktode K. et al. // ZAAC, 2012. V. 638. P. 1311. https://doi.org/10.1002/zaac.201200189
- 10. Speier G., Csihony, J., Whalen A.M., Pierpont C.G. // Inorg. Chim. Acta. 1996. V. 245. P. 1. https://doi.org/10.1016/0020-1693 (95)04792-1
- 11. Razborov D.A., Lukoyanov A.N., Makarov V.M. et al. // Russ. Chem. Bull. 2015. V. 64. P. 2377. https://doi.org/10.1007/s11172-015-1166-1
- 12. Ivakhnenko, E.P., Koshchienko, Y.V., Chernyshev A.V. et al. // Russ. J. Gen. Chem. 2016. V. 86. P. 1664. https://doi.org/10.1134/S1070363216070227
- 13. Piskunov A.V., Paskunova K.I., Bogomyakov et al. // Polyhedron. 2020. V. 186. P. 114610. https://doi.org/10.1016/j.poly.2020.114610
- 14. Maity S., Kundu S., Bera S. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 3691. https://doi.org/10.1002/cjic.201600526
- 15. Mitra K.N., Goswami S., and Peng S.M. // Chem. Commun. 1998. P. 1685. https://doi.org/10.1039/A804794D
- 16. Piskunov A.V., Mescheryakova I.N., Bogomyakov A.S. et al. // Inorg. Chem. Commun. 2009. V. 12. P. 1067. https://doi.org/10.1016/j.inoche.2009.08.023
- 17. Coughlin E.J., Qiao Y., Lapsheva et al. // J. Am. Chem. Soc. 2019. V. 141. P. 1016. https://doi.org/10.1021/jacs.8011302
- 18. Coughlin E.J., Zeller M., Bart S.C. // Angew. Chem., Int. Ed. 2017. V. 56. P. 12142. https://doi.org/10.1002/anie.201705423
- 19. Sinitsa D.K., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Polyhedron, 2021. V. 195. P. 114967. https://doi.org/10.1016/j.poly.2020.114967
- 20. Lange C.W., Pierpont C.G. // Inorg. Chim. Acta. 1997. V. 263. P. 219. https://doi.org/10.1016/S0020-1693 (97)05649-1
- 21. Pierpont C.G., Downs H.H. // Inorg. Chem. 1977. V. 16. P. 2970. https://doi.org/10.1021/ic5017a064
- 22. Bera S., Maity S., Weyhermüller T., Ghosh P. // Dalton Trans. 2016. V. 45. P. 8236. https://doi.org/10.1039/C6DT00091F
- 23. Bera S., Mondal S., Maity S. et al. // Inorg. Chem. 2016. V. 55. P. 4746. https://doi.org/10.1021/acs.inorgehem.6b00040
- 24. Cao L.L., Bamford K.L., Liu L.L., Stephan D.W. // Chem. Eur. J. 2018. V. 24. P. 3980. https://doi.org/10.1002/chem.201800607
- 25. Pointillart F., Klementieva S., Kuropatov V. et al. // Chem. Commun. 2012. V. 48. P. 714. https://doi.org/10.1039/C1CC16314K
- 26. Pointillart F., Kuropatov V., Mitin A. et al. // Eur. J. Inorg. Chem. 2012. V. 2012. P. 4708. https://doi.org/10.1002/cjic.201200121
- 27. Raghavan A., Venugopal A. // J. Coord. Chem. 2014. V. 67. P. 2530. https://doi.org/10.1080/00958972.2014.931576
- 28. Zhang R., Wang Y., Zhao Y. et al. // Dalton Trans. 2021. V. 50. P. 13634. https://doi.org/10.1039/D1DT02120F
- 29. Zwart F.J., Reus B., Laporte A.A.H. et al. // Inorg. Chem. 2021. V. 60. P. 3274. https://doi.org/10.1021/acs.inorgehem.0c03685
- 30. Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. // Inorg. Chem. 2021. V. 60. P. 12309. https://doi.org/10.1021/acs.inorgehem.1c01514
- 31. Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. et al. // Inorg. Chim. Acta, 2022. V. 539. P. 121031. https://doi.org/10.1016/j.ica.2022.121031
- 32. Baker R.J., Farley R.D., Jones C. et al. // Dalton Trans. 2002. P. 3844. https://doi.org/10.1039/B2066051
- 33. Lukoyanov A.N., Fedushkin I.L., Hummer M., Schumann H. // Russ. Chem. Bull. 2006. V. 55. P. 422. https://doi.org/10.1007/s11172-006-0273-4
- 34. Abakumov G.A., Cherkasov V.K., Piskunov A.V. et al. // Dokl. Chem. 2010. V. 434. P. 237. https://doi.org/10.1134/S0012500810090077
- 35. Kocherova T.N., Martyanov K.A., Rumyantsev R.V. et al. // ChemistrySelect. 2024. V. 9. e202401455. https://doi.org/10.1002/sict.202401455
- 36. Perrin D.D., Armarego W.L.F., Perrin D.R. Purification of Laboratory Chemicals, Oxford (UK): Pergamon, 1980.
- 37. Piskunov A.V., Mescheryakova I.N., Fukin G.K. et al. // New J. Chem. 2010. V. 34. P. 1746. https://doi.org/10.1039/C0N100229A
- 38. Абакумов Г.А., Дружков Н.О., Курский Ю.А., Шавырин А.С. // Изв. АН. Сер. хим. 2003. С. 682.
- 39. SAINT. Data Reduction and Correction Program. Madison (WI): Bruker AXS, 2014.
- 40. Rigaku Oxford Diffraction. CrysAlis Pro software system. Wroclaw (Poland): Rigaku Corporation, 2023.
- 41. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- 42. Sheldrick G. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 43. Sheldrick, G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 44. Guzei I. A., Wendt M. Program Solid-G. UW-Madison (WI, USA), 2004.
- 45. Kocherova T.N., Druzhkov N.O., Arsenyev M.V. et al. // Russ. Chem. Bull. 2023. V. 72. P. 1192. https://doi.org/10.1007/s11172-023-3889-8
- 46. Guzei I.A., Wendt M. // Dalton Trans. 2006. P. 3991. https://doi.org/10.1039/B605102B
- 47. Fukin G.K., Guzei I.A., Baranov E.V. // J. Coord. Chem. 2007. V. 60. P. 937. https://doi.org/10.1080/00958970600987933
- 48. Batsanov S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.
- 49. Addison A.W., Rao T.N., Reedijk J. et al. // Dalton Trans. 1984. P. 1349. https://doi.org/10.1039/DT9840001349
- 50. Okuniewski A., Rosiak D., Chojnacki J., Becker B. // Polyhedron. 2015. V. 90. P. 47. https://doi.org/10.1016/j.poly.2015.01.035
- 51. Rosiak D., Okuniewski A., Chojnacki J. // Polyhedron. 2018. V. 146. P. 35. https://doi.org/10.1016/j.poly.2018.02.016
- 52. Brown S.N. // Inorg. Chem. 2012. V. 51. P. 1251. https://doi.org/10.1021/ic202764j
- 53. Surendra K., Corey E. // J. Am. Chem. Soc. 2014. V. 136. P. 10918. https://doi.org/10.1021/ja506502p
- 54. Prasanna M., Row T.G. // Cryst. Eng. 2000. V. 3. P. 135. https://doi.org/10.1016/S1463-0184 (00)00035-6
- 55. Shen Q.J., Pang X., Zhao X.R. et al. // CrystEngComm. 2012. V. 14. P. 5027. https://doi.org/10.1039/C2CE25338K