RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

The Influence of the Steric Factor on the Structure of Indium(III) Iodide Complexes based on Substituted -Iminobenzoquinones

PII
S0132344X25080011-1
DOI
10.31857/S0132344X25080011
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 8
Pages
487-500
Abstract
A series of substituted -iminobenzoquinones (6-((2,6-di--propylphenyl)imino)-2,4-(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L), 4-(-butyl)-6-((2,6-di--propylphenyl)imino)-3-methoxycyclohexa-2,4-dien-1-one (L) and 6-((2,6-di--propylphenyl)imino)-3-methoxy-4-(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L)) were used to synthesize indium(III) iodide complexes containing the redox-active ligand in its neutral form. The -iminobenzoquinone L was synthesized for the first time. It was found that the structure of the obtained complexes depends on the degree of steric shielding of the carbonyl oxygen atom in the initial -iminobenzoquinone. The sterically hindered ligand L forms a 1 : 1 adduct with InI (complex (L)InI (I)). The absence of a substituent at the 2-position of the -iminobenzoquinone ring promotes the formation of bis-ligand ionic derivatives {[(L)]InI}InI} (II) and {[(L)]InI}InI} (III). The molecular structures of L and complexes I - 0.5 toluene, II - toluene · 0.5 hexane were determined by X-ray diffraction analysis (CCDC № 2440874 (L), 2440875 (I · 0.5 toluene), 2440876 (II · toluene · 0.5 hexane)). The optical and electrochemical properties of the initial -iminobenzoquinones and indium(III) complexes based on them were studied. It is shown that activating complexation contributes to a significant enhancement of the oxidative properties of L, L and L.
Keywords
Array индий(III) редокс-активные лиганды УФ-спектроскопия циклическая вольтамперометрия
Date of publication
23.05.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Абакумов Г.А., Каимов Е.С., Разуваев Г.А. // Изв. АН. Сер. хим. 1971. С. 1827.
  2. 2. Разуваев Г.А., Абакумов Г.А., Каимов Е.С. // Докл. АН СССР. 1971. V. 201. С. 624.
  3. 3. Абакумов Г.А., Каимов Е.С. // Докл. АН СССР. 1972. V. 202. С. 827.
  4. 4. Абакумов Г.А., Каимов Е.С., Ермаков В.В., Белосотская Е.С. // Изв. АН. Сер. хим. 1975. С. 927.
  5. 5. Brown M., McGarvey B., Tuck D. // Dalton Trans. 1998. P. 3543. https://doi.org/10.1039/A804124E
  6. 6. Boucher D., Brown M., McGarvey B., Tuck D. // Dalton Trans. 1999. P. 3445. https://doi.org/10.1039/A901758E
  7. 7. Abakumov G., Cherkasov V., Piskunov A.V. et al. // Chem. 2009. V. 427. P. 168.
  8. 8. Mondal M.K., Mukherjee C. // Dalton Trans. 2016. V. 45. P. 13532. https://doi.org/10.1039/C6DT02443B
  9. 9. Anga S., Paul M., Naktode K. et al. // ZAAC, 2012. V. 638. P. 1311. https://doi.org/10.1002/zaac.201200189
  10. 10. Speier G., Csihony, J., Whalen A.M., Pierpont C.G. // Inorg. Chim. Acta. 1996. V. 245. P. 1. https://doi.org/10.1016/0020-1693 (95)04792-1
  11. 11. Razborov D.A., Lukoyanov A.N., Makarov V.M. et al. // Russ. Chem. Bull. 2015. V. 64. P. 2377. https://doi.org/10.1007/s11172-015-1166-1
  12. 12. Ivakhnenko, E.P., Koshchienko, Y.V., Chernyshev A.V. et al. // Russ. J. Gen. Chem. 2016. V. 86. P. 1664. https://doi.org/10.1134/S1070363216070227
  13. 13. Piskunov A.V., Paskunova K.I., Bogomyakov et al. // Polyhedron. 2020. V. 186. P. 114610. https://doi.org/10.1016/j.poly.2020.114610
  14. 14. Maity S., Kundu S., Bera S. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 3691. https://doi.org/10.1002/cjic.201600526
  15. 15. Mitra K.N., Goswami S., and Peng S.M. // Chem. Commun. 1998. P. 1685. https://doi.org/10.1039/A804794D
  16. 16. Piskunov A.V., Mescheryakova I.N., Bogomyakov A.S. et al. // Inorg. Chem. Commun. 2009. V. 12. P. 1067. https://doi.org/10.1016/j.inoche.2009.08.023
  17. 17. Coughlin E.J., Qiao Y., Lapsheva et al. // J. Am. Chem. Soc. 2019. V. 141. P. 1016. https://doi.org/10.1021/jacs.8011302
  18. 18. Coughlin E.J., Zeller M., Bart S.C. // Angew. Chem., Int. Ed. 2017. V. 56. P. 12142. https://doi.org/10.1002/anie.201705423
  19. 19. Sinitsa D.K., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Polyhedron, 2021. V. 195. P. 114967. https://doi.org/10.1016/j.poly.2020.114967
  20. 20. Lange C.W., Pierpont C.G. // Inorg. Chim. Acta. 1997. V. 263. P. 219. https://doi.org/10.1016/S0020-1693 (97)05649-1
  21. 21. Pierpont C.G., Downs H.H. // Inorg. Chem. 1977. V. 16. P. 2970. https://doi.org/10.1021/ic5017a064
  22. 22. Bera S., Maity S., Weyhermüller T., Ghosh P. // Dalton Trans. 2016. V. 45. P. 8236. https://doi.org/10.1039/C6DT00091F
  23. 23. Bera S., Mondal S., Maity S. et al. // Inorg. Chem. 2016. V. 55. P. 4746. https://doi.org/10.1021/acs.inorgehem.6b00040
  24. 24. Cao L.L., Bamford K.L., Liu L.L., Stephan D.W. // Chem. Eur. J. 2018. V. 24. P. 3980. https://doi.org/10.1002/chem.201800607
  25. 25. Pointillart F., Klementieva S., Kuropatov V. et al. // Chem. Commun. 2012. V. 48. P. 714. https://doi.org/10.1039/C1CC16314K
  26. 26. Pointillart F., Kuropatov V., Mitin A. et al. // Eur. J. Inorg. Chem. 2012. V. 2012. P. 4708. https://doi.org/10.1002/cjic.201200121
  27. 27. Raghavan A., Venugopal A. // J. Coord. Chem. 2014. V. 67. P. 2530. https://doi.org/10.1080/00958972.2014.931576
  28. 28. Zhang R., Wang Y., Zhao Y. et al. // Dalton Trans. 2021. V. 50. P. 13634. https://doi.org/10.1039/D1DT02120F
  29. 29. Zwart F.J., Reus B., Laporte A.A.H. et al. // Inorg. Chem. 2021. V. 60. P. 3274. https://doi.org/10.1021/acs.inorgehem.0c03685
  30. 30. Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. // Inorg. Chem. 2021. V. 60. P. 12309. https://doi.org/10.1021/acs.inorgehem.1c01514
  31. 31. Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. et al. // Inorg. Chim. Acta, 2022. V. 539. P. 121031. https://doi.org/10.1016/j.ica.2022.121031
  32. 32. Baker R.J., Farley R.D., Jones C. et al. // Dalton Trans. 2002. P. 3844. https://doi.org/10.1039/B2066051
  33. 33. Lukoyanov A.N., Fedushkin I.L., Hummer M., Schumann H. // Russ. Chem. Bull. 2006. V. 55. P. 422. https://doi.org/10.1007/s11172-006-0273-4
  34. 34. Abakumov G.A., Cherkasov V.K., Piskunov A.V. et al. // Dokl. Chem. 2010. V. 434. P. 237. https://doi.org/10.1134/S0012500810090077
  35. 35. Kocherova T.N., Martyanov K.A., Rumyantsev R.V. et al. // ChemistrySelect. 2024. V. 9. e202401455. https://doi.org/10.1002/sict.202401455
  36. 36. Perrin D.D., Armarego W.L.F., Perrin D.R. Purification of Laboratory Chemicals, Oxford (UK): Pergamon, 1980.
  37. 37. Piskunov A.V., Mescheryakova I.N., Fukin G.K. et al. // New J. Chem. 2010. V. 34. P. 1746. https://doi.org/10.1039/C0N100229A
  38. 38. Абакумов Г.А., Дружков Н.О., Курский Ю.А., Шавырин А.С. // Изв. АН. Сер. хим. 2003. С. 682.
  39. 39. SAINT. Data Reduction and Correction Program. Madison (WI): Bruker AXS, 2014.
  40. 40. Rigaku Oxford Diffraction. CrysAlis Pro software system. Wroclaw (Poland): Rigaku Corporation, 2023.
  41. 41. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
  42. 42. Sheldrick G. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  43. 43. Sheldrick, G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  44. 44. Guzei I. A., Wendt M. Program Solid-G. UW-Madison (WI, USA), 2004.
  45. 45. Kocherova T.N., Druzhkov N.O., Arsenyev M.V. et al. // Russ. Chem. Bull. 2023. V. 72. P. 1192. https://doi.org/10.1007/s11172-023-3889-8
  46. 46. Guzei I.A., Wendt M. // Dalton Trans. 2006. P. 3991. https://doi.org/10.1039/B605102B
  47. 47. Fukin G.K., Guzei I.A., Baranov E.V. // J. Coord. Chem. 2007. V. 60. P. 937. https://doi.org/10.1080/00958970600987933
  48. 48. Batsanov S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.
  49. 49. Addison A.W., Rao T.N., Reedijk J. et al. // Dalton Trans. 1984. P. 1349. https://doi.org/10.1039/DT9840001349
  50. 50. Okuniewski A., Rosiak D., Chojnacki J., Becker B. // Polyhedron. 2015. V. 90. P. 47. https://doi.org/10.1016/j.poly.2015.01.035
  51. 51. Rosiak D., Okuniewski A., Chojnacki J. // Polyhedron. 2018. V. 146. P. 35. https://doi.org/10.1016/j.poly.2018.02.016
  52. 52. Brown S.N. // Inorg. Chem. 2012. V. 51. P. 1251. https://doi.org/10.1021/ic202764j
  53. 53. Surendra K., Corey E. // J. Am. Chem. Soc. 2014. V. 136. P. 10918. https://doi.org/10.1021/ja506502p
  54. 54. Prasanna M., Row T.G. // Cryst. Eng. 2000. V. 3. P. 135. https://doi.org/10.1016/S1463-0184 (00)00035-6
  55. 55. Shen Q.J., Pang X., Zhao X.R. et al. // CrystEngComm. 2012. V. 14. P. 5027. https://doi.org/10.1039/C2CE25338K
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library